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Abstract

We present a universal mechanism that can be com-
bined with existing trust models to extend their capabili-
ties towards efficient modelling of the situational (context-
dependent) trust. The mechanism describes the similar-
ity between the situations using their distance in a metric
space and defines a set of reference contexts in this space
to which it associates the trustfulness data. The data asso-
ciated with each reference context is updated and queried
with the weight that decreases with distance between the
current situation and the reference context. In the presented
mechanism, we use Leader-Follower clustering to place the
reference contexts to be representative of the data. In an
empirical test, we show that context-aware models easily
outperform the general trust when the situation has an im-
pact on partner trustfulness and that their performance and
efficiency is comparable with general trust models when the
trustfulness is independent of the situation. Multi-context
nature of the model also expands its use towards more
advanced uses, allowing policy/norm learning from at the
trust model at runtime, as well as reasoning based on un-
certain identities.

1 Introduction

While the need to consider the situation in the trusting
decision has been recognized for a long time [10], this issue
has been long neglected by the trust research community.
Sabater & Sierra ([15], page 39) have recently even stated
that: ”...there are very few computational trust and reputa-
tion models that care about the multi-context nature of trust
and even fewer that propose some kind of solution...”.

This contribution presents a mechanism that converts a
general (denoted single-context in [15]) trust model into a
situational one. The mechanism uses metric spaces to ex-
ploit the similarity between the situations, addressing two
critical properties of any such model: data efficiency and

relevance:
� Data Efficiency means that the learning phase of the

model shall be relatively fast, exploiting the similar data to
infer the conclusions about the situations that were not pre-
viously encountered. It also ensures that the model con-
sumes a reasonable amount of memory and processor time.
� Data Relevancemeans that the conclusion we infer

about the situation shall be based on the most relevant ex-
perience, not on the general behavior of the partner.

The two properties mentioned are contradictory in their
nature (ignoring the implementation and mechanism de-
tails) : with the increasing relevance, we sacrifice the effi-
ciency as we need more data to discover the details. There-
fore, the mechanism we seek shall be adaptive, able to dis-
cover and better represent the important situations.

We shall note that the mechanism as presented is not a
trust model by its own right – it is an extension that can be
combined with most existing trust models and we prove this
ability in the evaluation section, where we test it with two
different trust models. In this paper, we will distinguish be-
tween the situation and the context:situation is the state of
the reality in the moment of the trusting decision or obser-
vation; thecontext is a formal, simplified representation of
the situation in our formal model shown in Section 2.

In Section 2, we introduce our model and explain its
functioning, including two alternative approaches to dataset
definition in Section 2.3. In Section 3, we evaluate the
model empirically and determine its performance under var-
ious conditions and with two different trust models. In
Section 4, we present the model extensions towards the in-
ductive reasoning and prediction, before concluding in Sec-
tion 5 where we also present our future work.

2 Formal Model for Context Representation

In order to represent the situation of the trusting deci-
sion, we replace the situation by its context, a pointci in
the context spaceC. Each dimension of theQ-dimensional
metric spaceC corresponds to one relevant feature of the



situation, and the metricsd(c1, c2) defined onC describes
the similarity1 between the contextsc1 andc2.

2.1 Context Space Definition

In general, we define the metric spaceC in several steps:
(i) We identify all relevant features of the environment, then
(ii ) define theQ-dimensional context space where each di-
mensionq matches a relevant feature. (iii ) For each dimen-
sion q, define its quantification (either discrete or continu-
ous) and appropriate distance metricdq that correctly rep-
resents the feature, and finally (iv), we define a joint metric
d on the full spaceC, taking into considerations the domain
characteristics and marginal metricsdi2.

To combine the marginal distances into thed func-
tion, we will typically choose one of the special types of
Minkowski distance:d(c1, c2) = (

∑Q
q=1 |c

q
1 − cq

2|p)
1
p . For

many practical purposes, we choose the values of p to
be 1, defining so called Manhattan distance that adds the
marginal distances of each dimension, or2 to define an Eu-
clidean distance, or we posep → ∞, obtaining Chebyshev
distance defined as a maximum of marginal distances.

2.2 Reference Contexts and Trustfulness Values

Once we have defined the metric spaceC with its dis-
tance functiond (see Section 3 for an example), we have a
formal framework how to asses the similarity of two trust-
ing situations. In order to integrate the context representa-
tion framework with the trust model, we need to define a set
R of reference contextsri, the points in theC for which we
keep the trustfulness values. We shall note that while theC
definition shall be the same for all partners modeled by the
trusting agent, the setR and the associated trust values are
kept independently for each partner.

In practice, this means that instead of maintaining a sin-
gle instance of the trust model structure (representing gen-
eral trust) per partner, we shall maintain one instance per
partner for each relevant reference context. The metricsd is
used to determine the weights of individual reference con-
texts in the evaluation or observation of a specific trusting

1Any distance functiond : C × C → R must respect following prop-
erties:non-negativity:

d(c1, c2) ≥ 0 (1)

, symmetry:
d(c1, c2) = d(c2, c1) (2)

, zero distance⇔ identity :

d(c1, c2) = 0⇔ c1 = c2 (3)

, triangle inequality :

d(c1, c3) ≤ d(c1, c2) + d(c2, c3) (4)

.
2Alternatively, we may define the global metric directly, without

marginal ones

situation. In the following, we will denote asΘA(X|ri) the
trustfulness of agentA in the situation represented by ref-
erence contextri. This value can be updated according to
most trust models currently in use, for example Regret [14],
FIRE [9] or other [12, 6, 13], provided that the inputs to this
model can be weighted and the outputs aggregated.

To obtain the weights of individual reference contextsri

for updates or aggregation after the event/query described
by contextcd, we transform the distanced(cd, ri) as fol-
lows: wi = f(d(cd, ri)), wheref is a non-increasing func-
tion on [0,+∞). This function represents the decay of the
observation usefulness with increasing distanced of the par-
ticular reference contextri – obviously, it is most useful
when its distanced(cd, ri) from the reference context is
zero. This function, together with the metric, is a part of the
domain description. For example, in our experiments pre-
sented in Section 3 we use a simple form of weight function
defined aswi = e−d(cd,ri).

After eachobservationwe integrate the new observation
τA(X|co) into the apriori trustfulness evaluationΘp

A(X|ri)
(wherep is the number of previous observations, with ag-
gregate weightW p =

∑
j<=p wp

i ) for eachri (wherewi is
non-zero) using the weighted aggregation formula:

Θp+1
A (X|ri) = WeAg((Θp

A(X|ri),W p, (τA(X|co), w
p+1
i ))
(5)

The exact form of theWeAg() operator depends entirely
on the trust model used to representΘp+1

A (X|ri). In the
trivial case, when theΘp

A(X|ri) is just awi weighted aver-
age of allp previous observations, we obtain:

Θp+1
A (X|ri) =

W p ·Θp
A(X|ri) + wp+1

i · τA(X|co)
W p + wp+1

i

(6)

When wequery the model to take a trusting decision, the
current contextcd is determined and the trustfulness is ob-
tained as a weighted combination of trustfulness associated
with respective reference contexts.

ΘA(X|cd) = WeAgri∈R(ΘA(X|ri), wi) (7)

In the weighted average case, we obtain:

ΘA(X|cd) =

∑
ri∈R wi ·ΘA(X|ri)∑

ri∈R wi
(8)

2.3 Reference Set Shapes

As we have seen in Equations 5 to 8, the computational
and memory complexity of trust processing depends lin-
early on the size of the setR. Therefore, it is crucial to
keep the size of the set as small as possible, while ensur-
ing that the bulk of the data is well covered by the contexts
in their proximity. When suggesting a method for shaping



class LFClustering:
def __init__(self, threshold):

self.centers = []
self.thresh = 0.5

def newSample(self, sample):
closest,dist = self.findClosestCenter(sample)
if closest != ’0’ and dist <= self.thresh:

closest.aggregate(sample, 1, 0.01)
else:

self.centers.append(sample)
def findClosestCenter(self, sample): ...

Figure 1. L-F Clustering algorithm [8] outlined
in Python

the setR, we shall avoid the introduction of a big number
of parameters to assign, as the domain-dependent metrics
shall shield us from the tuning process. In both methods we
present, only a single distance parameter is required.

As a baseline approach for our experiments, we have
used a regular grid form for theR definition. In this
approach, the reference contexts are generated as a grid,
spaced regularly in each dimension by grid distance param-
eter. When in the 3D, the resulting structure is similar to a
simple cubic crystal lattice and covers the spaceC (or rather
its relevant area) regularly. In Fig. 2, we can see such grid
as a regular lattice of black crosses over the spaceC.

The regular grid approach is obviously an inefficient one,
as in the real applications the observations are rarely spread
uniformly over the space. They rather tend to form clusters
of points in theC representing the typical trusting decisions.
This motivates our principal approach, where we use the
pattern matching techniques to define (and also update the
positions) of the reference contextsri.

From the wide range of clustering techniques, we have
selected the Leader-Follower clustering [8], that doesn’t
need any information regarding the expected number of
clusters (see Fig. 1). Instead, it uses a cutoff distance pa-
rameter similar to grid distance – when the new observation
falls farther away from an existing cluster than the cutoff
distance, a new cluster is created around this observation.
Position update of the existing centroids (e.g. reference con-
texts in our case) is analogous to other clustering methods.
This corresponds very well with the real world effects, e.g.
inflation or seasonal variations.

3 Evaluation

To evaluate our approach experimentally, we model the
trust reasoning of a humanitarian aid organization agent that
acquires transportation services from several local trans-
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Figure 2. Regular grid (crosses) and
clustering-based reference contexts (red
squares) covering the data (blue dots) in a
2D C projection.

porters after major disaster.

Context Space Definition To illustrate the abstract no-
tions of metric spaceC, we introduce an example of such
space for our logistics scenario, where we model each trust-
ing situation (observation or decision) by three parameters:
cargo type, cargo size and road quality. Cargotypedefines
the product we transport: medical supplies, food or durable
goods. Each cargo type has specific handling requirements
– medical supplies are the most sensitive to carry, while the
durables require less care.Sizeof the transport is simply a
quantity to carry, while theroad qualityrepresents the qual-
ity of the roads to use for transport. It is interesting to note
thattypedimension is discrete, while thesizeandroad qual-
ity are real-valued, but different: one has an absolute scale
(size), while the other will be close to1.

The context spaceC is three dimensional, with one dis-
crete dimension and two continuous ones. The next step
is a definition of marginal distancesdq for each dimension.
In the typedomain, we place our products on a ”sensitiv-
ity” scale: medical supplies require most attention:5, with
the food in the middle:1 and the durables as least sensitive
ones, with0.2 value3. Our type distance metrics is defined
as follows, using the product properties defined above:

dtype(c1, c2) = |ln(type1)− ln(type2)| (9)

In the size domain, the metric shall describe the similar-
ity between two contracts in terms of their relative size. We
propose a measure

dsize(c1, c2) = |ln(size1)− ln(size2)| (10)

3Inverting the scale will not change the result thanks to the distance
symmetry stated in Eq. 2.



The logarithmic relation captures an intuitive notion of ra-
tio: 10 tons difference between two 20 and 30 ton transports
is much more important than the same difference between
two shipments of thousands of tons.

We apply the same reasoning for the road quality:

droad(c1, c2) = |ln(qual1)− ln(qual2)| (11)

Then we combine the above metrics using a slightly
modified (weighted) ”Manhattan distance”:

d(c1, c2) = α1d
type(c1, c2)+α2d

size(c1, c2)+α3d
road(c1, c2)

(12)

Experimental Setup In the task allocation problem that
the agents solve in the simulated humanitarian logistics
scenario, the agents choose one or more providers (trans-
porters) for each contract and use their trust models to rea-
son about their trustfulness.

In the underlying simulation model, the transporters an-
swer the call for proposals withbid pricesprb based on the
nominal transportation cost and profit margins. Thereal
price, that includes the cost of the cargo lost during trans-
portation, is derived after the transport from the bid price
and transporterreal trustworthinessΘ. TheΘ depends on
the same parameters as those that define theC dimensions.
Real priceprr is determined asprr = prb

Θ , where

Θ = Θtype · atan′(price) · atan′(supply) (13)

The functionatan′(x), used as a sigmoid approxima-
tion, is defined as a normalizedarctan: its range is
(xinf , xsup) (bothxinf , xsup are in the range set) andx co-
ordinate of its flection point is defined by parameterxcenter.
xslope determines the first derivation - speed of the growth
on the domain.

atan′(x) =
1− xinf

π
· arctan(

xcenter − x

xslope
) (14)

While the provider simulation is a very simple one, it
is sufficiently versatile to model the performance of market
actors to obtain validation scenarios for our methods.

To evaluate the performance of the evaluated trust mod-
els, we introduce themean loss, defined as a difference be-
tween the real priceprr and the bid priceprb. In the graphs,
it is aggregated per all contracts awarded in a single time
step. As it is impossible to achieve the zero loss in our sce-
nario, we introduce the optimal choice value, defining the
optimal performance of the trust model.

To validate the model independence of the method pre-
sented (i.e. the fact that the restrictions placed onΘ mod-
elling are not constraining), we have used two different trust
models in our evaluation. The first model, denotedRNT in

the graphs, we represent the trustfulness in eachΘ(X|ri)
as a time-weighted average of the last N relevant obser-
vations. This means that we store N real values in each
reference contextri. The other model, denoted FNT, is a
slightly simplified representation described in [13], where
eachΘ(X|ri) is a triangular, asymmetrical fuzzy number.

In Figures 3, 4, 6 and 8, we compare the performance
of the trust models without the context representation (de-
notedFNT andRNT) with the same models enhanced with
context representation. The first pair, denotedgrid RNT
and grid FNT uses the grid form of the reference setR.
The modelsclusters RNT andclusters FNT use the form
based on the leader follower clustering.

3.1 Influence of Situation Modelling

In the first batch of experiments, we will investigate the
influence of the context modelling. We will therefore com-
pare several trust models with and without the context com-
ponents in the scenarios with increasing level of situation
influence on the provider performance. The changes in the
performance are modelled by changes of the coefficients in
the Eq. 13 and 14.

In the first scenario (Fig. 3), the performance of all the
providers is flat over the whole spaceC - the outcome of
the delegation/contracting is independent of the situation.
We may note that the general methods perform slightly bet-
ter, as their learning process is more efficient, but the differ-
ences remain minor.
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Figure 3. Scenario with trustfulness indepen-
dent of situation – all methods perform com-
parably.

In the second scenario (Fig. 4), we have introduced a
strong, but one dimensional situation dependence with one
best provider per cargo type. We can see that in this case,
context-based methods easily outperform the general trust
and reach the optimum relatively fast. In Fig. 5, we can
see that the depicted sub-market (defined by the contracts



in one part of the context space) is rapidly dominated by the
most trustful provider, while the others are restrained to the
services where they perform better.
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Figure 4. Scenario with trustfulness depen-
dent on the cargo type only.
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Figure 5. Market shares example with trust-
fulness dependent on the cargo type only.

When we introduce a full 3D context dependence, we ob-
tain the results shown in Fig. 6 and Fig. 7. We can see that
the task is more difficult due to the increased dimension-
ality, but the context modelling solves the problem. The
slower learning pace is clear when we compare the Fig. 7
with Fig. 5 – the market domination is slower. In Fig. 6,
se shall note that the clustering based metrics provide better
results than the grid based ones. We attribute this difference
to the fact that the reference context points cover the data
better, as shown for example in Fig. 2.

3.2 Metrics Quality

The definition of the distance functiond and weight
functionwi as discussed in Section 3 is crucial for the trust
modelling quality. In Fig. 6 and Fig. 8, we can compare
the influence of the inappropriate metrics (results shown
in Fig. 8) when compared with an appropriate metrics in
Fig. 6. The difference between the two cases is merely in

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

Time [Period Count]

M
e

a
n

 l
o

s
s

 [
C

re
d

it
 u

n
it
s
]

RNT grid RNT clusters RNT FNT

grid FNT clusters FNT optimal choice

Figure 6. Scenario with trustfulness depen-
dent on all 3 parameters, with an adequate
metrics. Compare with Fig. 8.
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Figure 7. Market shares with trustfulness de-
pendent on all 3 parameters. Compare with
Fig. 5.

the values of theα1..3 coefficients from Eq. 12. In the case
depicted in Fig. 8, the values areα1 = 4, α2 = 1, α3 = 1,
while in the data from Fig. 6, we use the valueα1 = α2 =
α3 = 4. The inappropriate metrics doesn’t fully consider
the role of the road status and size of the cargo, as it empha-
sizes only the cargo type.

3.3 Computational Efficiency Considerations

In this section, we will briefly address the differences
between the naive regular grid approach and adaptive clus-
tering in terms of computational efficiency. The results pre-
sented were collected in a single experiment, but are fairly
consistent with the other experiments in the series. They
are also fairly consistent with the real business environment,
where the actors tend to acquire similar services repetitively
from the same provider.

While using the general trust model, we only use one
trust evaluation per partner – this corresponds to a single
reference context. While using the regular grid with an ac-
ceptable density over theC, we need a133 = 2197 ref-
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Figure 8. Scenario with trustfulness depen-
dent on all 3 parameters, performance with an
incorrect, type-emphasizing metrics. Com-
pare with Fig. 6.

erence contexts (each with a trust model) to model each
provider, over a thousand fold increase. While such com-
plex model can be acceptable in some environments, the re-
quirements of the model with reference contexts placed by
adaptive clustering are significantly lower – we only need
about 12 reference contexts to cover the data and even ob-
tain slightly better results. The number of reference con-
texts |R| doesn’t only determine the amount of memory,
but also the computational efficiency both in the observa-
tion and query time. This is due to the fact that the relations
5 and 7 pass through all the points of theR.

4 From Situational Trust to Adaptive Policies

In the above-presented experiments, we have shown that
the context modeling is a very viable extension of the trust
model that significantly improves the quality of the trusting
decisions in the environments where the trustfulness of the
agents depends on the situation.

Besides this intuitive interpretation, the model data can
be exploited in a more sophisticated manner as well. In the
paragraph 3.3, we have mentioned that each trusting deci-
sion must integrate the data from the whole setR, introduc-
ing a significant performance overhead. To avoid this pro-
cessing, we may use the model in an ”inductive” manner
and identify the boundaries of the regions where the part-
ner agents are completely distrustful or completely trustful.
Besides the efficiency improvement (that is even disputable
when the cutoff distance is selected appropriately), the data
regarding the performance of different agents in the simi-
lar situations can be analyzed together. When all the agents
fail in a certain situation, they may agree to introduce a pol-
icy [5] that specifically prohibits such actions, allowing the
agents to learn from the experience of their peers without

explicitly disclosing their past failures. The implementa-
tion of the policy-creating mechanism can be realized either
in a peer-to-peer manner, or the policy can be introduced
(and possibly enforced) by a dedicated entity (e.g. KAoS
server with reputation module) that receives the data from
the agents or observes their behavior independently. The
example of the rule from our domain is: ”Never ship a large
quantity of medical supplies at once.”.

When considering the rules that doesn’t apply to all
agents in the community, we can note that the agent identity
can be considered as a new dimension of the extended con-
text spaceC. The main problem of such an extension is the
definition of the marginal metrics in this dimension, where
we can exploit the techniques from the social network anal-
ysis [1, 2] or measure the similarity between agents, while
respecting the properties of the metrics4. To facilitate the
process, we may decompose the single identity dimension
into an identity subspace, where each agent is defined by
one or more crucial properties. The number of considered
agent properties determines the subspace dimension.

With this modification, the trust model no longer consid-
ers agents as individuals. Rather, following [3], it volun-
tarily makes the predictions about the performance of the
agents by exploiting the data regarding the similar agent’s
performance in the past. The main advantage is that the
extended model learns faster and once the new agent is cat-
egorized, its performance can be predicted. This is also a
clear advantage in the ad-hoc environments, where there is
no agent platform to enforce unique identity of an agent. In
the secure environments, the extended model can run in par-
allel with the classical one and can be used to implement the
social/group dimension of trust as defined by [14]. The ex-
amples of the rule can be ”Don’t use agent A for the trans-
port of expensive cargo.” in the single-dimension identity
case or ”Don’t use the agents from region North specialized
in short-distance hauls for the food transports.”

Note that the policies introduced by the mechanism are
not necessarily prohibitive; instead, using the principle of
the adjustable autonomy [4], the agents may be obliged to
obtain an explicit permission before making the positive
trusting decision. This corresponds well with the notion of
the trust in a highly constrained situation without viable al-
ternatives (i.e. despair [6]).

To infer the rules from the data, we can use a whole
range of proven techniques ranging from pattern matching
[8], fuzzy control [7] or even formal logic [11].

The ability to define the policies from the data facili-
tates the integration of trust models with general security
infrastructure. Many existing devices or applications can’t
be retrofitted with trust models of their own and the poli-
cies, inferred and communicated by enabled agents, can be

4In the trivial case, we can introduce a simple discrete metrics of the
typed(ci, ci) = 0 ∀ci andd(ci, cj) = const ∀ci 6= cj .



crucial for the security of the whole system.

5 Conclusions

In our contribution, we have presented an efficient uni-
versal method for context representation that can be asso-
ciated with most currently existing trust models, effectively
extending their application from general to situational trust.

An interesting feature of the model is its domain inde-
pendence – to use the model, user only has to identify rele-
vant features of the situations, define the context space with
a corresponding dimension and provide marginal/complete
metrics that describes the similarity between various prop-
erty values. All the subsequent processing is domain and
trust model independent, as we also show in the experimen-
tal section where we evaluate two different trust models,
based on real and fuzzy numbers respectively.

In the experimental part, we shall note that the mech-
anism turns the trust model into a more machine-learning
like problem. We can observe many effects that are typical
for learning and classification problems. A good example
is a slower learning in higher dimensional problems, where
it doesn’t depend on the dimension of the space, but rather
on the dimension of the subspace containing the data and
queries, as shown in Fig. 5 and 7.

In general, situational trust models are more appropriate
for the detection of competence component of the trust [6],
as they can efficiently distinguish between relevant compe-
tencies. On the other hand, we argue that they also provide
an inherent resistance against trust building/exploiting, as
the high trustfulness acquired in a small contracts is less
relevant for high-risk delegations.

The fact that the model provides richer information al-
lows the agents to use it in a more general manner, to au-
tonomously define policies that are adapted to the current
state of the environment and can help the agents to avoid
bad collaborators without explicitly using the trust model.
This extends the applicability of the trust modelling and ap-
proaches the trust models with general security infrastruc-
ture, which is based on policies and authorizations rather
than direct trust use. The trust-enabled agents can be intro-
duced into an existing system to observe its behavior and
to share their findings with the other parts of the system by
communicating (and/or enforcing) the policies.

The policies can be either identity dependent, or applica-
ble to all agents. If we consider representing the agents by
their properties rather than identity, we can obtain a model
with inductive properties, able to estimate the performance
of new entrants using the experience with the similar part-
ners in the past. The topics outlined in Section 4 will pro-
vide us with a vast area for our future research, as we intend
to validate the approach on real problems.
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