

Human-Agent Teamwork for Cyber
Sensemaking in Network Operations

Jeffrey M. Bradshaw, Larry Bunch, Tom Eskridge, Paul J. Feltovich
Robert R. Hoffman, Matthew Johnson, James Lott

Florida Institute for Human and Machine Cognition (IHMC)
Pensacola, FL

{jbradshaw, lbunch, teskridge, pfeltovich, rhoffman, mjohnson, jlott}@ihmc.us

Marco M. Carvalho
Florida Institute of Technology (FIT)

Melbourne, FL
mcarvalho@fit.edu

ABSTRACT
In this article, we describe how we implement human-machine
teamwork in Sol, a framework for cyber operations [3].
Specifically, we describe how the use of software agents (Luna),
semantically rich policies (KAoS), and principles of visualization
grounded in an understanding of human perception and cognition
(OZ) can be used to support distributed sensemaking and effective
response to cyber threats.

1. INTRODUCTION
Despite the significant attention being given to the critical
challenges of cyber operations, the ability to keep up with the
increasing volume and sophistication of network attacks is
seriously lagging. To better empower network professionals, we
need to seriously rethink the way cyber operations tools and
approaches have been conceived, developed, and deployed.

2. AGENTS, POLICIES, AND
VISUALIZATION IN SOL
In this section, we introduce the core technical capabilities on
which Sol relies: the Luna Agent Framework, KAoS Policy
Services Framework, and OZ Visualization Principles.

2.1 Luna Agent Framework
To meet the challenging demands of cyber operations, we have
developed a new agent framework called Luna, named for the
founder of Pensacola, Tristán de Luna y Arellano (1519 – 1571)
[4]. Three reasons dictated our decision to implement Luna.

First, in considering the security requirements of current software
agent platforms, the key role of policy constraints that could
govern behavior at every level of the agent system readily became
apparent (see section 2.2 below). We have found that the ability to
use policy to impose constraints on agent behavior, in essence
providing a guarantee to people that agent autonomy would
always be exercised within specified bounds, gave people the
assurance they needed to feel that highly capable agents could act
in a trustworthy, predictable, and safe manner.

Second, with respect to the need for a platform supporting the
interactive formulation of common agent tasks by end users, rather
than by software developers, we believe that policy systems may
also prove useful. In past experience, we have learned that many
common tasks can be formulated as declarative obligation policies
that require given actions when triggered by a specified context.

Finally, to satisfy the need for a platform that would provide built-
in support for effective coordination of joint activity within mixed
teams of humans and agents, we believe that a policy-based
approach also provides a viable option. Based on our research and
development experience in a variety of applications involving the
coordination of human-agent-robot teamwork (HART), we

believe that important aspects of teamwork can be supported by
policy-based mechanisms [2].

Figure 1. Luna Conceptual Architecture.

Figure 1 shows conceptually how KAoS integrates with Luna to
provide services and to enforce policies. An OWL representation
of Luna is maintained within the KAoS Distributed Directory
Service. Through its interactions with the Luna host environment,
KAoS regulates the lifecycle of both the environment (e.g., start
and stop Luna) and the agents (e.g., create, pause, resume, stop,
and move agents). Policy can also regulate environment context
for shared agent memory (e.g., getting and setting its properties),
allowing efficient parallel processing of large data sets. An agent-
based implementation of context mirroring across different Luna
environments is provided. Through policy, the Luna host
environment also governs agent progress appraisal [7]—allowing
analysts to easily learn what tasks and which agents are
significantly ahead or behind schedule, and thus replanning their
own efforts on interdependent tasks accordingly.

In order to support dynamic scalability, load balancing, adaptive
resource management, and specific application needs, the Luna
platform supports the policy-governed option of allowing the state
of agents (vs. code of agents) to migrate between operating
environments and hosts. The Luna environment maintains agent
mailboxes with message forwarding when agents migrate. Luna
state mobility will provide the foundation for future
implementation of agent persistence (i.e., saving and loading
agent state to a persistent store).

One of the most important innovations in Luna is the ability to
add custom agent actions to the policy ontology, based on their
Java implementation, even when source code is not available. We
provide a Java2OWL tool to automate this task.

2.2 KAoS Policy Services Framework
Because agents are powerful, we use powerful policy
management and enforcement frameworks to govern their actions.
Whereas many special-purpose policy approaches are optimized
only for specific kinds of tasks (e.g., access control), the ontology-
based approach of KAoS enables semantically-rich specifications
of virtually any kind of constraint on any specific kind of action in
richly defined dynamic contexts. KAoS supports not only the
ability to permit or forbid an action in a given context, but also to
require that certain actions be performed when a dynamic,
context-specific trigger is activated (e.g., start doing X, stop doing
Y, reduce your bandwidth usage, log certain actions)—or to waive
such an obligation dynamically if the situation warrants.

The KAoS Policy Services framework [10] was the first to offer
an ontology-based approach (based on the W3C standard, OWL 2
(http://www.w3.org/TR/owl2-overview/) to policy representation
and reasoning. It is currently the most successful and mature of all
such efforts. Following collaborative efforts by the NSA-
sponsored Digital Policy Management (DPM) Architecture Group
and IHMC, the KAoS core ontology was adopted as the basis for
future standards efforts in DPM.

Figure 2. KAoS Conceptual Architecture.

The basic elements of the KAoS architecture are shown in Figure
2. The three layers of functionality correspond to three different
policy representations:

• Human Interface Layer: This layer uses a hypertext-like
graphical interface (KAoS Policy Administration Tool —
KPAT) for policy specification in the form of constrained
English sentences. The vocabulary is automatically provided
from the relevant core ontologies or application-specific
ones. Besides KPAT’s use in policy specification and
analysis, it is employed for administrative tasks such as
browsing and loading ontologies, and domain and Guard
management. The generic KPAT interface can be easily
customized or replaced.

• Policy Management Layer: Within this layer, OWL is used to
encode and manage policy-related information. The KAoS
Distributed Directory Service (DDS) encapsulates a set of
ontology reasoning mechanisms over the policies, used for
policy deconfliction, analysis, and testing.

• Policy Monitoring and Enforcement Layer: KAoS
automatically “compiles” OWL policies to a very efficient
format that can be used for monitoring and enforcement. This
representation provides the grounding for abstract ontology

terms, connecting them to the instances in the runtime
environment and to other policy-related information (e.g.,
dynamic state or history). Extensibility is supported through
a framework with well-defined interfaces that can be
enriched to support new kinds of policies. KAoS Guards
residing in this layer are integrated with the controlled
application and provide an API for policy information
querying and decision-making.

KAoS is integrated into IHMC’s Luna agent framework, as well
as third-party agent platforms and traditional service-oriented
architectures. Preliminary work has been done on agent learning
mechanisms that propagate learning with localized opportunistic
mechanisms inspired by biological analogues. In addition, we are
developing capabilities for KAoS to take advantage of localized
agent learning results by allowing new policies to be constructed
programmatically, with optional human oversight. This would
allow learning results from groups of individual agents that are of
high generality or urgency to be rapidly propagated to whole
classes of other agents.

In support of human-agent teamwork, each Luna agent is
governed by policies designed to assure its observability (e.g.,
mandatory status updates at an appropriate frequency, or in
response to specified events), directability (e.g., immediate
responsiveness to redirection due to policy changes),
interpredictability (e.g., obligation policies assuring that required
behavior will be executed within a specified time period),
adaptation (e.g., policies governing the range of adaptations
permitted and the process of propagation to other agents), support
for multiplicity (e.g., policies governing synchronization of
multiple perspectives), and trustworthiness (e.g., policies assuring
the observability of parameters indicating the reliability of agent
operations). In addition, KAoS policies also help with resilience,
ensuring that the entire system adapts automatically to changes in
context, environment, task reprioritization, or resources. New or
modified policies can be made effective immediately at runtime.

2.3 OZ Visualization Principles
Our approach to real-time cyber sensemaking displays is informed
by lessons learned in the design of IHMC’s highly-successful OZ
flight display [9]. Instead of relying on a continual visual scan of
cockpit instruments, as on the traditional flight display, OZ
presents information holistically and in the context of the current
state of the world outside. Presenting flight performance
information in context allows people to more easily maintain
overall situation awareness. Presenting information holistically
allows dependencies among key flight parameters to be made
salient through the direct perception of visual primitives.
Modifications made to any part of the model through pilot input
or changes in the operating environment immediately affect all
related visual elements so the operator implicitly learns deep
model relationships in context.

Though the display’s reliance on colored lines and dots on a black
background may seem a primitive throwback to first-generation
video games, this simplicity is by design, based on a sophisticated
understanding of the latest research results in human perception
and cognition. Instead of relying on the slow and small human
focal vision system, OZ is designed to use the fast and robust
ambient vision system—the same system that people use to
quickly and successfully navigate crowded hallways without
conscious thought or to catch a football on the run. As another
example, OZ exploits the capabilities of human vision for quickly
perceiving changes by using movement to convey difficult,
correlated information.

Due to these and other features, experimentation has repeatedly
demonstrated the superiority of OZ over traditional displays in
minimizing pilot error, reducing pilot disorientation, and
maintaining situation awareness. Because of the OZ display’s
reliance on the ambient visual system, its advantages are shown
even more dramatically in experimental conditions where the pilot
is temporarily blinded by a flash of light (as when, e.g., impaired
by lack of oxygen) or distracted by performing auxiliary visual
tasks that rely on the focal vision system (e.g., reading). Beyond
its role in simplifying flight-related tasks, the integrated
performance model has an added training benefit—helicopter
pilots trained using the hover functionality of OZ are able to more
quickly acquire the depth of understanding necessary to master
difficult challenges unique to rotorcraft flight, and fixed-wing
pilots learn faster, retain training longer, and have a deeper
understanding of the fundamental rules of flight than their
conventionally-trained counterparts.

We apply these innovations in interactive visualization, and other
domain-specific features, in the development of visual displays
for complex real-time data in cyber operations applications.

3. HUMAN-AGENT TEAMWORK IN SOL
In this section, we outline our general approach to human-agent
teamwork in Sol, emphasizing how we apply the concepts of
coactive emergence in the design of work methods for distributed
sensemaking in cyber operations and of polycentric governance in
engineering for resilience of the joint human-machine system.
Then we give specific examples of how this is done in practice.

3.1 Coactive Emergence
We characterize our approach to human-agent teamwork by the
term coactive emergence. It describes a continuous iterative
process whereby useful interpretations of data are developed, host
and network configurations are adjusted, and effective responses
to threats are undertaken through the interplay of joint
sensemaking, decision-making, and task execution activities
performed by analysts and software agents in tandem [3].

The word “coactive” emphasizes the joint, simultaneous, and
interdependent nature of such collaboration among analysts and
agents. Figure 3 illustrates how this applies in Sol: 1) Agents are
pre-coded in Java to perform particular classes of analytic tasks.
Analysts manage the work of software agents through policy
constraints that direct their sensemaking and task execution
activities; 2) Policy-governed agents work together to interpret
real-time data and to manipulate host and network configurations,
optionally enriching their capabilities through machine learning
techniques; 3) Agents work together to enrich their findings with
additional information gleaned through learning (e.g., hypothesized
correlations between data sets of interest, anticipated future trends); 4)
Agents may aggregate and present their findings by visually
annotating graphical displays in real-time in order to highlight and
draw the attention of the analyst to anomalous or otherwise interesting
elements, such as possible attacks. Analysts interact with these
displays in order monitor ongoing progress and effectiveness, and
to explore and evaluate hypotheses and options; 5) As agent-
derived information is presented to analysts, they may agree or
disagree with agent findings, leading to further corrections and
refinements of interpretations, and consideration of response options;
6) Analysts continue to direct and redirect ongoing agent activity
through the construction of new agents, modification of agent
policies, and extensions to lines of inquiry. We are also developing
methods for system “hardening” in real time by empowering agents to
change any number of configurations in near real-time through policy
[6].

Figure 3. The Coactive Emergence Cycle

3.2 Polycentric Governance
Within the framework of resilient systems engineering, Woods
and Branlat have discussed important patterns that lead to failure
in complex systems [11]. We are developing agent-based methods
to provide support for adaptive performance in the face of
stressors and surprise through the principles of polycentric
governance [8].

A related notion of organic resilience [5] relies heavily on
biologically-inspired analogues and self-organizing strategies for
the management and defense of distributed complex systems. As
with many biological systems, the goal of an organic resilience
approach is to, as much as possible, avoid static and centralized
single-point-of-failure solutions for organizing. Thus, although
groups of agents within the system are collectively responsible for
jointly executing various tasks, the specific responsibilities
assigned to agents are not completely sorted out in advance. The
goal is to allow the agents to self-organize within the constraints
of their individual capabilities, the current applicable policies, and
current availability of agents. Applied to organic resilience,
policy-based collective obligations provide the regulatory
mechanisms that enable effective and coactive coordination
algorithms.

3.3 Agent-Based Processing and Tagging
Agents play a variety of roles in Sol. Among the most demanding
is in multi-layer agent processing and tagging of live or
retrospectively played-back NetFlow data representing worldwide
Internet traffic. A high-level view of roles and relationships
among agents relating to these functions is shown in Figure 4.

Incoming UDP traffic goes to a NetFlow agent for parsing and
transformation into Java objects (1). The NetFlow agent sends the
data to any number of Tagger agents that work in parallel in real-
time to tag the data (2). For example, Watchlist agents tag data
that appears on whitelists or blacklists while IDS Match agents tag
data corresponding to intrusion detection alerts. Drawing on
selected results from low-level tagging agents, Attack pattern
agents may be defined to look for higher-level attack patterns. A
system of semaphores ensures that all the Tagger agents have
completed their work before the NetFlow agent sends results to
the Flow Cache (3). NetFlow Visualization agents enforce
policies that mediate data being sent to analyst displays, ensuring,
among other things, that data not authorized for viewing by
particular users are automatically filtered out (4).

The Esper complex event processor [1] provides an example of
Sol support for efficient ad hoc queries of many types that can be
initiated and consumed by other visualization agents (e.g.,
Stripchart View agent) or by agents of other types for further
processing (5). We are also considering the use of Esper for data
stream handling further upstream in the agent analytic process.

CogLog Correlator agents ingest combined data from selected
Tagger agents operating on real-time data (6) and historical data
within the CogLog (7). The CogLog is a Semantic-Wiki-based
tool prototype with which software agents and human analysts can
maintain and use a log of findings pertinent to a
given investigation, while also linking to other relevant
information from prior cases. Unlike the real-time Tagger agents,
the Correlator agent can perform deeper kinds of analytics in “out
of band” mode. Among other things, this correlated information
can help different analysts “connect the dots” between related
investigative efforts. The Correlator agents may send additional
data annotations to NetFlow Visualization agents and/or to agents
supporting other visualizations (e.g., Connection Graph view) (8).
Our Attack Pattern Learning Agents provide another example of
an “out of band” agent type. These agents consume and process
all NetFlows (rather than just subsets of tagged data produced by
Tagger agents) in order to learn and propagate useful threat
patterns. Agents can provide active, actionable information by
generating “Live Advisories.” Remote colleagues can view the
rationale for the advisory, replay the relevant data—and,
potentially, launch protective actions.

Figure 4. Agent Processing and Tagging of NetFlow Data.

In the future, exploration of larger questions of adversarial intent,
attack strategies, and social connections among attackers could
also proceed along similar lines of increasing abstraction in agent
processing. The ability to reduce perception and reasoning
requirements on the analyst through fixed or ad hoc organizations
of agents processing visual and logical data dimensions is a major
benefit of agent-based analytics.

3.4 The Flow Capacitor
The Flow Capacitor (also known as “Aurora”) is an example of a
highly-configurable, interactive 3D visualization of Internet traffic
based on OZ principles. The input to this visualization is NetFlow
records.

A major motivator in the development of this interactive
visualization was to be able to show and discriminate among large
numbers of NetFlows moving across networks simultaneously in
near real-time. In order to do this, the design started with the
simplest possible representation for a single network event: a
short line segment, or “dart.” These darts can be made
surprisingly rich (compared to a single point) with multiple colors,
length, width, orientation, and glyph annotations. In order to show
information about where the dart was coming from and going to,
the endpoints of each dart’s journey through time is projected onto
source and destination ‘planes’ in 3D space. The period of time
represented between the top and bottom planes can be configured
to any length, from weeks or days to milliseconds. Other kinds of

planes (e.g., treemaps), revealing how different groups of
NetFlows cluster when their metadata is projected onto abstract
property spaces, can also be defined.

Figure 5. Distributed Denial-of-Service Attack Example.

Analysts visually map selected results of agent tagging relating to
data of interest so it can be easily noticed in the visual display.
The display is designed so that it could be adapted to show other
kinds of events (e.g., financial transactions, travel, spread of
diseases, disaster-related information). Any number or kind of
planes could be stacked or otherwise arranged topographically to
answer questions about complex, high-tempo situations. From a
single snapshot of the Flow Capacitor in Figure 5, we can see the
unfolding of a sequence of events leading up to a distributed
denial-of-service attack portrayed in graphic clarity.

The innovations in human-agent collaboration embodied in Sol
suggest significant new directions in automated assistance for
cyber operations.

Acknowledgements. Many thanks to our US Department of
Defense sponsors for their enthusiastic support of this work.

4. REFERENCES
1. EsperTech. In. http://esper.codehaus.org/. (accessed 18 July, 2012).
2. Bradshaw, J.M., P. Feltovich, and M. Johnson. "Human-Agent Interaction." In Handbook of

Human-Machine Interaction, edited by G. Boy, 283-302. Ashgate, 2011.
3. Bradshaw, J.M., M. Carvalho, L. Bunch, T. Eskridge, P.J. Feltovich, C. Forsythe, R.R.

Hoffman, M. Johnson, D. Kidwell, and D.D. Woods. "Coactive emergence as a sensemaking
strategy for cyber operations." Manuscript submitted for publication, 2012.

4. Bunch, L., J.M. Bradshaw, M. Carvalho, T. Eskridge, P.J. Feltovich, J. Lott, and A. Uszok.
"Human-Agent Teamwork in Cyber Operations: Supporting Co-Evolution of Tasks and
Artifacts with Luna." Presented at the Tenth German Conference on Multiagent System
Technologies (MATES 2012) (LNAI 7598), Trier, Germany, October 10-12, 2012, 53-67.

5. Carvalho, M., T. Lamkin, and C. Perez. "Organic resilience for tactical environments." In Fifth
International ICST Confernece on Bio-Inspired Models of Network, Information, and
Computing Systems (Bionetics). Boston, MA, 2010.

6. Carvalho, M., J.M. Bradshaw, L. Bunch, T. Eskridge, P.J. Feltovich, R.R. Hoffman, and D.
Kidwell. "Command and control requirements for Moving Target Defense." IEEE Intelligent
Systems 27, no. 3 (2012): 79-85.

7. Feltovich, P., J.M. Bradshaw, W.J. Clancey, M. Johnson, and L. Bunch. "Progress appraisal as
a challenging element of coordination in human and machine joint activity." Presented at the
Engineering Societies for the Agents World VIII, Athens Greece, October, 2007.

8. Ostrom, E. 2008. Polycentric systems as one approach for solving collective-action problems
(SSRN-id130469). In Social Science Research Network. http://ssrn.com/abstract=1304697.
(accessed September 28, 2012).

9. Still, D.L., T. Eskridge, and L.A. Temme. "Interface for non-pilot UAV control." Presented at
the Human Factors of UAVs Workshop, Mesa, AZ 2004.

10. Uszok, A., J.M. Bradshaw, J. Lott, M. Johnson, M. Breedy, M. Vignati, K. Whittaker, K.
Jakubowski, and J. Bowcock. "Toward a Flexible Ontology-Based Policy Approach for
Network Operations Using the KAoS Framework." Presented at the The 2011 Military
Communications Conference (MILCOM 2011) 2011, 1108-1114.

11. Woods, D.D. and M. Branlat. "Basic patterns in how complex systems fail." In Resilience
Engineering in Practice, edited by E. Hollnagel, J. Paries, D.D. Woods, and J. Wreathall, 127-
143. Burlington, VT: Ashgate, 2008.

