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ABSTRACT 
In this article, we describe how we implement human-machine 
teamwork in Sol, a framework for cyber operations [3]. 
Specifically, we describe how the use of software agents (Luna), 
semantically rich policies (KAoS), and principles of visualization 
grounded in an understanding of human perception and cognition 
(OZ) can be used to support distributed sensemaking and effective 
response to cyber threats. 

1. INTRODUCTION 
Despite the significant attention being given to the critical 
challenges of cyber operations, the ability to keep up with the 
increasing volume and sophistication of network attacks is 
seriously lagging. To better empower network professionals, we 
need to seriously rethink the way cyber operations tools and 
approaches have been conceived, developed, and deployed. 

2. AGENTS, POLICIES, AND 
VISUALIZATION IN SOL 
In this section, we introduce the core technical capabilities on 
which Sol relies: the Luna Agent Framework, KAoS Policy 
Services Framework, and OZ Visualization Principles. 

2.1 Luna Agent Framework 
To meet the challenging demands of cyber operations, we have 
developed a new agent framework called Luna, named for the 
founder of Pensacola, Tristán de Luna y Arellano (1519 – 1571) 
[4]. Three reasons dictated our decision to implement Luna. 

First, in considering the security requirements of current software 
agent platforms, the key role of policy constraints that could 
govern behavior at every level of the agent system readily became 
apparent (see section 2.2 below). We have found that the ability to 
use policy to impose constraints on agent behavior, in essence 
providing a guarantee to people that agent autonomy would 
always be exercised within specified bounds, gave people the 
assurance they needed to feel that highly capable agents could act 
in a trustworthy, predictable, and safe manner. 

Second, with respect to the need for a platform supporting the 
interactive formulation of common agent tasks by end users, rather 
than by software developers, we believe that policy systems may 
also prove useful. In past experience, we have learned that many 
common tasks can be formulated as declarative obligation policies 
that require given actions when triggered by a specified context. 

Finally, to satisfy the need for a platform that would provide built-
in support for effective coordination of joint activity within mixed 
teams of humans and agents, we believe that a policy-based 
approach also provides a viable option. Based on our research and 
development experience in a variety of applications involving the 
coordination of human-agent-robot teamwork (HART), we 

believe that important aspects of teamwork can be supported by 
policy-based mechanisms [2]. 

 
Figure 1. Luna Conceptual Architecture. 

Figure 1 shows conceptually how KAoS integrates with Luna to 
provide services and to enforce policies. An OWL representation 
of Luna is maintained within the KAoS Distributed Directory 
Service. Through its interactions with the Luna host environment, 
KAoS regulates the lifecycle of both the environment (e.g., start 
and stop Luna) and the agents (e.g., create, pause, resume, stop, 
and move agents). Policy can also regulate environment context 
for shared agent memory (e.g., getting and setting its properties), 
allowing efficient parallel processing of large data sets. An agent-
based implementation of context mirroring across different Luna 
environments is provided. Through policy, the Luna host 
environment also governs agent progress appraisal [7]—allowing 
analysts to easily learn what tasks and which agents are 
significantly ahead or behind schedule, and thus replanning their 
own efforts on interdependent tasks accordingly. 

In order to support dynamic scalability, load balancing, adaptive 
resource management, and specific application needs, the Luna 
platform supports the policy-governed option of allowing the state 
of agents (vs. code of agents) to migrate between operating 
environments and hosts. The Luna environment maintains agent 
mailboxes with message forwarding when agents migrate. Luna 
state mobility will provide the foundation for future 
implementation of agent persistence (i.e., saving and loading 
agent state to a persistent store). 

One of the most important innovations in Luna is the ability to 
add custom agent actions to the policy ontology, based on their 
Java implementation, even when source code is not available. We 
provide a Java2OWL tool to automate this task. 



 

 

2.2 KAoS Policy Services Framework 
Because agents are powerful, we use powerful policy 
management and enforcement frameworks to govern their actions. 
Whereas many special-purpose policy approaches are optimized 
only for specific kinds of tasks (e.g., access control), the ontology-
based approach of KAoS enables semantically-rich specifications 
of virtually any kind of constraint on any specific kind of action in 
richly defined dynamic contexts. KAoS supports not only the 
ability to permit or forbid an action in a given context, but also to 
require that certain actions be performed when a dynamic, 
context-specific trigger is activated (e.g., start doing X, stop doing 
Y, reduce your bandwidth usage, log certain actions)—or to waive 
such an obligation dynamically if the situation warrants. 

The KAoS Policy Services framework [10] was the first to offer 
an ontology-based approach (based on the W3C standard, OWL 2 
(http://www.w3.org/TR/owl2-overview/) to policy representation 
and reasoning. It is currently the most successful and mature of all 
such efforts. Following collaborative efforts by the NSA-
sponsored Digital Policy Management (DPM) Architecture Group 
and IHMC, the KAoS core ontology was adopted as the basis for 
future standards efforts in DPM. 

 
Figure 2. KAoS Conceptual Architecture. 

The basic elements of the KAoS architecture are shown in Figure 
2. The three layers of functionality correspond to three different 
policy representations: 

• Human Interface Layer: This layer uses a hypertext-like 
graphical interface (KAoS Policy Administration Tool — 
KPAT) for policy specification in the form of constrained 
English sentences. The vocabulary is automatically provided 
from the relevant core ontologies or application-specific 
ones. Besides KPAT’s use in policy specification and 
analysis, it is employed for administrative tasks such as 
browsing and loading ontologies, and domain and Guard 
management. The generic KPAT interface can be easily 
customized or replaced. 

• Policy Management Layer: Within this layer, OWL is used to 
encode and manage policy-related information. The KAoS 
Distributed Directory Service (DDS) encapsulates a set of 
ontology reasoning mechanisms over the policies, used for 
policy deconfliction, analysis, and testing. 

• Policy Monitoring and Enforcement Layer: KAoS 
automatically “compiles” OWL policies to a very efficient 
format that can be used for monitoring and enforcement. This 
representation provides the grounding for abstract ontology 

terms, connecting them to the instances in the runtime 
environment and to other policy-related information (e.g., 
dynamic state or history). Extensibility is supported through 
a framework with well-defined interfaces that can be 
enriched to support new kinds of policies. KAoS Guards 
residing in this layer are integrated with the controlled 
application and provide an API for policy information 
querying and decision-making. 

KAoS is integrated into IHMC’s Luna agent framework, as well 
as third-party agent platforms and traditional service-oriented 
architectures. Preliminary work has been done on agent learning 
mechanisms that propagate learning with localized opportunistic 
mechanisms inspired by biological analogues. In addition, we are 
developing capabilities for KAoS to take advantage of localized 
agent learning results by allowing new policies to be constructed 
programmatically, with optional human oversight. This would 
allow learning results from groups of individual agents that are of 
high generality or urgency to be rapidly propagated to whole 
classes of other agents. 

In support of human-agent teamwork, each Luna agent is 
governed by policies designed to assure its observability (e.g., 
mandatory status updates at an appropriate frequency, or in 
response to specified events), directability (e.g., immediate 
responsiveness to redirection due to policy changes), 
interpredictability (e.g., obligation policies assuring that required 
behavior will be executed within a specified time period), 
adaptation (e.g., policies governing the range of adaptations 
permitted and the process of propagation to other agents), support 
for multiplicity (e.g., policies governing synchronization of 
multiple perspectives), and trustworthiness (e.g., policies assuring 
the observability of parameters indicating the reliability of agent 
operations). In addition, KAoS policies also help with resilience, 
ensuring that the entire system adapts automatically to changes in 
context, environment, task reprioritization, or resources. New or 
modified policies can be made effective immediately at runtime. 

2.3 OZ Visualization Principles 
Our approach to real-time cyber sensemaking displays is informed 
by lessons learned in the design of IHMC’s highly-successful OZ 
flight display [9]. Instead of relying on a continual visual scan of 
cockpit instruments, as on the traditional flight display, OZ 
presents information holistically and in the context of the current 
state of the world outside. Presenting flight performance 
information in context allows people to more easily maintain 
overall situation awareness. Presenting information holistically 
allows dependencies among key flight parameters to be made 
salient through the direct perception of visual primitives. 
Modifications made to any part of the model through pilot input 
or changes in the operating environment immediately affect all 
related visual elements so the operator implicitly learns deep 
model relationships in context. 

Though the display’s reliance on colored lines and dots on a black 
background may seem a primitive throwback to first-generation 
video games, this simplicity is by design, based on a sophisticated 
understanding of the latest research results in human perception 
and cognition. Instead of relying on the slow and small human 
focal vision system, OZ is designed to use the fast and robust 
ambient vision system—the same system that people use to 
quickly and successfully navigate crowded hallways without 
conscious thought or to catch a football on the run. As another 
example, OZ exploits the capabilities of human vision for quickly 
perceiving changes by using movement to convey difficult, 
correlated information. 



 

 

Due to these and other features, experimentation has repeatedly 
demonstrated the superiority of OZ over traditional displays in 
minimizing pilot error, reducing pilot disorientation, and 
maintaining situation awareness. Because of the OZ display’s 
reliance on the ambient visual system, its advantages are shown 
even more dramatically in experimental conditions where the pilot 
is temporarily blinded by a flash of light (as when, e.g., impaired 
by lack of oxygen) or distracted by performing auxiliary visual 
tasks that rely on the focal vision system (e.g., reading). Beyond 
its role in simplifying flight-related tasks, the integrated 
performance model has an added training benefit—helicopter 
pilots trained using the hover functionality of OZ are able to more 
quickly acquire the depth of understanding necessary to master 
difficult challenges unique to rotorcraft flight, and fixed-wing 
pilots learn faster, retain training longer, and have a deeper 
understanding of the fundamental rules of flight than their 
conventionally-trained counterparts. 

We apply these innovations in interactive visualization, and other 
domain-specific features, in the development of visual displays 
for complex real-time data in cyber operations applications. 

3. HUMAN-AGENT TEAMWORK  IN SOL 
In this section, we outline our general approach to human-agent 
teamwork in Sol, emphasizing how we apply the concepts of 
coactive emergence in the design of work methods for distributed 
sensemaking in cyber operations and of polycentric governance in 
engineering for resilience of the joint human-machine system. 
Then we give specific examples of how this is done in practice. 

3.1 Coactive Emergence 
We characterize our approach to human-agent teamwork by the 
term coactive emergence. It describes a continuous iterative 
process whereby useful interpretations of data are developed, host 
and network configurations are adjusted, and effective responses 
to threats are undertaken through the interplay of joint 
sensemaking, decision-making, and task execution activities 
performed by analysts and software agents in tandem [3].  

The word “coactive” emphasizes the joint, simultaneous, and 
interdependent nature of such collaboration among analysts and 
agents. Figure 3 illustrates how this applies in Sol: 1) Agents are 
pre-coded in Java to perform particular classes of analytic tasks. 
Analysts manage the work of software agents through policy 
constraints that direct their sensemaking and task execution 
activities; 2) Policy-governed agents work together to interpret 
real-time data and to manipulate host and network configurations, 
optionally enriching their capabilities through machine learning 
techniques; 3) Agents work together to enrich their findings with 
additional information gleaned through learning (e.g., hypothesized 
correlations between data sets of interest, anticipated future trends); 4) 
Agents may aggregate and present their findings by visually 
annotating graphical displays in real-time in order to highlight and 
draw the attention of the analyst to anomalous or otherwise interesting 
elements, such as possible attacks. Analysts interact with these 
displays in order monitor ongoing progress and effectiveness, and 
to explore and evaluate hypotheses and options; 5) As agent-
derived information is presented to analysts, they may agree or 
disagree with agent findings, leading to further corrections and 
refinements of interpretations, and consideration of response options; 
6) Analysts continue to direct and redirect ongoing agent activity 
through the construction of new agents, modification of agent 
policies, and extensions to lines of inquiry. We are also developing 
methods for system “hardening” in real time by empowering agents to 
change any number of configurations in near real-time through policy 
[6]. 

 
Figure 3. The Coactive Emergence Cycle 

3.2 Polycentric Governance 
Within the framework of resilient systems engineering, Woods 
and Branlat have discussed important patterns that lead to failure 
in complex systems [11]. We are developing agent-based methods 
to provide support for adaptive performance in the face of 
stressors and surprise through the principles of polycentric 
governance [8]. 

A related notion of organic resilience [5] relies heavily on 
biologically-inspired analogues and self-organizing strategies for 
the management and defense of distributed complex systems. As 
with many biological systems, the goal of an organic resilience 
approach is to, as much as possible, avoid static and centralized 
single-point-of-failure solutions for organizing. Thus, although 
groups of agents within the system are collectively responsible for 
jointly executing various tasks, the specific responsibilities 
assigned to agents are not completely sorted out in advance. The 
goal is to allow the agents to self-organize within the constraints 
of their individual capabilities, the current applicable policies, and 
current availability of agents. Applied to organic resilience, 
policy-based collective obligations provide the regulatory 
mechanisms that enable effective and coactive coordination 
algorithms. 

3.3 Agent-Based Processing and Tagging 
Agents play a variety of roles in Sol. Among the most demanding 
is in multi-layer agent processing and tagging of live or 
retrospectively played-back NetFlow data representing worldwide 
Internet traffic. A high-level view of roles and relationships 
among agents relating to these functions is shown in Figure 4. 

Incoming UDP traffic goes to a NetFlow agent for parsing and 
transformation into Java objects (1). The NetFlow agent sends the 
data to any number of Tagger agents that work in parallel in real-
time to tag the data (2). For example, Watchlist agents tag data 
that appears on whitelists or blacklists while IDS Match agents tag 
data corresponding to intrusion detection alerts. Drawing on 
selected results from low-level tagging agents, Attack pattern 
agents may be defined to look for higher-level attack patterns. A 
system of semaphores ensures that all the Tagger agents have 
completed their work before the NetFlow agent sends results to 
the Flow Cache (3). NetFlow Visualization agents enforce 
policies that mediate data being sent to analyst displays, ensuring, 
among other things, that data not authorized for viewing by 
particular users are automatically filtered out (4). 

The Esper complex event processor [1] provides an example of 
Sol support for efficient ad hoc queries of many types that can be 
initiated and consumed by other visualization agents (e.g., 
Stripchart View agent) or by agents of other types for further 
processing (5). We are also considering the use of Esper for data 
stream handling further upstream in the agent analytic process. 



 

 

CogLog Correlator agents ingest combined data from selected 
Tagger agents operating on real-time data (6) and historical data 
within the CogLog (7). The CogLog is a Semantic-Wiki-based 
tool prototype with which software agents and human analysts can 
maintain and use a log of findings pertinent to a 
given investigation, while also linking to other relevant 
information from prior cases. Unlike the real-time Tagger agents, 
the Correlator agent can perform deeper kinds of analytics in “out 
of band” mode. Among other things, this correlated information 
can help different analysts “connect the dots” between related 
investigative efforts. The Correlator agents may send additional 
data annotations to NetFlow Visualization agents and/or to agents 
supporting other visualizations (e.g., Connection Graph view) (8). 
Our Attack Pattern Learning Agents provide another example of 
an “out of band” agent type. These agents consume and process 
all NetFlows (rather than just subsets of tagged data produced by 
Tagger agents) in order to learn and propagate useful threat 
patterns. Agents can provide active, actionable information by 
generating  “Live Advisories.” Remote colleagues can view the 
rationale for the advisory, replay the relevant data—and, 
potentially, launch protective actions. 

 
Figure 4. Agent Processing and Tagging of NetFlow Data. 

In the future, exploration of larger questions of adversarial intent, 
attack strategies, and social connections among attackers could 
also proceed along similar lines of increasing abstraction in agent 
processing. The ability to reduce perception and reasoning 
requirements on the analyst through fixed or ad hoc organizations 
of agents processing visual and logical data dimensions is a major 
benefit of agent-based analytics. 

3.4 The Flow Capacitor 
The Flow Capacitor (also known as “Aurora”) is an example of a 
highly-configurable, interactive 3D visualization of Internet traffic 
based on OZ principles. The input to this visualization is NetFlow 
records. 

A major motivator in the development of this interactive 
visualization was to be able to show and discriminate among large 
numbers of NetFlows moving across networks simultaneously in 
near real-time. In order to do this, the design started with the 
simplest possible representation for a single network event: a 
short line segment, or “dart.” These darts can be made 
surprisingly rich (compared to a single point) with multiple colors, 
length, width, orientation, and glyph annotations. In order to show 
information about where the dart was coming from and going to, 
the endpoints of each dart’s journey through time is projected onto 
source and destination ‘planes’ in 3D space. The period of time 
represented between the top and bottom planes can be configured 
to any length, from weeks or days to milliseconds. Other kinds of 

planes (e.g., treemaps), revealing how different groups of 
NetFlows cluster when their metadata is projected onto abstract 
property spaces, can also be defined. 

 
Figure 5. Distributed Denial-of-Service Attack Example. 

Analysts visually map selected results of agent tagging relating to 
data of interest so it can be easily noticed in the visual display. 
The display is designed so that it could be adapted to show other 
kinds of events (e.g., financial transactions, travel, spread of 
diseases, disaster-related information). Any number or kind of 
planes could be stacked or otherwise arranged topographically to 
answer questions about complex, high-tempo situations. From a 
single snapshot of the Flow Capacitor in Figure 5, we can see the 
unfolding of a sequence of events leading up to a distributed 
denial-of-service attack portrayed in graphic clarity. 

The innovations in human-agent collaboration embodied in Sol 
suggest significant new directions in automated assistance for 
cyber operations. 
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