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Abstract

In the mid-1980s, Brian Gaines first developed a model to predict the trajectory of progress in human–computer relationships,

including how the knowledge science research programme would naturally transform itself over time into something he called

‘‘symbiosis science.’’ In this article, we reflect both on the extraordinary prescience of this model, and the contributions and challenges

faced by researchers intent on progressive achievement toward the aspirations it inspires.
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1. Introduction

Brian Gaines was always thinking decades ahead of the
rest of us. His BRETAM diagram brilliantly predicted
the trajectory of progress in human–computer relation-
ships, including how the knowledge science research
programme would naturally transform itself over time into
something he called ‘‘symbiosis science’’ (see Gaines,
2013). The term ‘‘symbiosis’’ hearkens back to a 1960
article on man-computer symbiosis written by J.C.R.
Licklider, the first director of the Information Processing
Technology Office of the US Advanced Research
Projects Agency—now DARPA (Licklider, 1960). In the
ultimate form of such symbiosis, human capabilities
would be transparently augmented by cognitive
prostheses—computational systems that would leverage
and extend human intellectual, perceptual, and collabora-
tive capacities, just as a steam shovel is a sort of
muscular prosthesis or eyeglasses are a sort of visual
prosthesis (Ford et al., 1997; Ford, 1998; Hoffman et al.,
2012).

This vision of symbiosis can be contrasted with early
efforts in knowledge acquisition where our intelligent
systems were somewhat like the disembodied brains shown
in low-budget black-and-white science fiction movies:

entities that ruled the world while floating in a glass jar
tethered by wires.1 While potentially rich in knowledge
models and inferential power, their only direct experience
of the world arrived through the impoverished modes of
keyboard input and video display output. As a result these
intelligent systems were virtually blind and helpless, having
little they could realistically learn about and even less that
they could directly act upon. As others in this special issue
have observed, the rise of the Internet as the largest
repository of knowledge on the planet has given intelligent
systems immeasurably richer means to sense, learn, and
interact with humans and with the myriad specialized
interactive devices, sensors, and services on which people
routinely rely.
However, this accumulation of human knowledge in

machine interpretable form is only the beginning. Brian
Gaines proposed four additional steps that would be
necessary to bring the notion of symbiosis science to full
fruition:

� the development of goal-directed autonomous knowledge-
creating processes;
� the increasing coupling of knowledge processing entities

in social networks;
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� the development of techniques to facilitate the synergy
between human and computer knowledge processes;
� the synthesis of both into a unified system.

Let’s look at progress on these steps in more detail.

2. The promise and problems of autonomous systems

Addressing the first step of developing ‘‘goal-directed
autonomous knowledge-creating processes,’’ one of Brian
Gaines’ students proposed in 1997 a conception of the
future Internet as a ‘‘cyberorganism’’ consisting of ‘‘dis-
tributed intelligent agents,’’ both human and software
(Chen, 1997). Subsequently, proponents of the Semantic
Web (Berners-Lee et al., 2001) envisioned that such agents
would, as Mark Musen expresses it, ‘‘comb the Internet
and would reason about user goals and how to achieve
them’’ (Musen, 2013). In setting their sights on this goal,
agent researchers abandoned the metaphor of the intelli-
gent system qua disembodied brain and adopted the vision
of software robots operating in a world of networked
computing resources. In this change of metaphor, the
research emphasis made an important shift from delibera-
tion to doing, from reasoning to remote action.

Much of the early research on autonomous systems was
motivated, not by cyber applications, but by situations in
the physical world in which autonomous systems were
required to ‘‘replace’’ human participation, thus minimiz-
ing the need for considering the human aspects of
such solutions. For example, one of the earliest high-
consequence applications of sophisticated agent technolo-
gies was in NASA’s Remote Agent Architecture (RAA),
designed to direct the activities of unmanned spacecraft
engaged in distant planetary exploration (Muscettola et al.,
1998). RAA was expressly designed for use in human-out-
of-the-loop situations where response latencies in the
transmission of round-trip control sequences from earth
would have impaired a spacecraft’s ability to respond to
urgent problems or to take advantage of unexpected
science opportunities.

Sadly, since those early days, most researchers in
autonomous systems have continued to pursue their
work in a technology-centric fashion, as if full autonomy—

complete independence and self-sufficiency of each
system—were the holy grail in every situation. Of course,
there are problems like deep-space exploration where the
goal of minimizing human involvement with autonomous
systems can be argued effectively. However, reflection on
the nature of human work reveals the shortsightedness of
such a singular focus: What could be more troublesome to
a group of individuals engaged in dynamic, fast-paced,
real-world collaboration than a colleague who is perfectly
able to perform tasks alone but lacks the skills required to
coordinate his or her activities with those of others?
Despite a widespread perception to the contrary, it should
be noted that virtually all of the significant deployments of

autonomous systems to date—e.g., military UAVs, NASA
rovers, oil spill UUVs, and disaster inspection robots—have
involved people in important roles, and that such involve-
ment was not merely to make up for the current inadequacy
of autonomous capabilities, but also because their jointly
coordinated efforts with humans were—or should have
been—intrinsically part of the mission planning and opera-
tions itself.
In view of the shortcomings of standalone autonomy for

complex situations, interest has grown in the topic of
‘‘cooperative’’ or ‘‘collaborative’’ autonomy. Unfortunately,
however, this research has a fundamental limitation—namely,
that the kind of ‘‘collaboration’’ usually imagined encom-
passes solely the autonomous systems themselves, regrettably
excluding the role of humans as potential collaborators.
For example, the United States Department of Defense
Unmanned Systems Roadmap stated the goal of pursuing
‘‘greater autonomy in order to improve the ability of
unmanned systems to operate independently [i.e., without
need for human intervention], either individually or collabora-
tively, to execute complex missions in a dynamic environ-
ment.’’ Similar briefs have complained of the fact that because
UxVs are not truly autonomous, their operation requires
substantial input from remote operators. They ask whether
additional research in cooperative autonomous behavior—
referring to cooperation between the autonomous systems
without any human element—could address this ‘‘problem.’’

3. Social machines and human–computer synergy

In contrast to such views, Brian Gaines never saw
standalone agent autonomy as the end of the journey.
He recognized that just as machine intelligence is hobbled
without autonomy, so machine autonomy without social-
ity is reduced to mere autism. Thus, as a next step, he
predicted ‘‘the increasing coupling of knowledge proces-
sing entities in social networks,’’ a topic deftly summarized
by Nigel Shadbolt in his discussion of ‘‘social machines’’
that embody new kinds of emergent and collective large-
scale problem-solving by people who are supported by
socially-contextualized machines (Shadbolt, 2013). My
personal focus, however, has been primarily on the sub-
sequent step in Brian Gaines’ model, namely ‘‘the devel-
opment of techniques to facilitate the synergy between
human[s] and computer[s],’’ with the machines acting in
the role of differently-abled teammates rather than of
sophisticated tools.
Increased synergy between humans and autonomous

systems as teammates requires a better understanding of
how they become interdependent as part of joint activity.
Regrettably, most methodologies for autonomous system
design have not been formulated with a sufficient appre-
ciation for the essential role of interdependence in joint
human-machine activity (Johnson et al., 2010). While
certain approaches to cooperative interaction between
humans and machines have become widely known (e.g.,
dynamic function allocation, supervisory control, adaptive
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automation, and adjustable autonomy), all of them share a
common flaw: namely, that they rely on some notion of
‘‘levels of autonomy’’ as a basis for their effectiveness
(Johnson et al., 2011).2 The problem with such approaches
is their singular focus on managing human-machine work
by varying which tasks are assigned to an agent or robot
based on some (usually context-free) assessment of its
independent capabilities for executing that task. However,
decades of studies have shown that successful collabora-
tion in everyday human interaction is largely a matter of
managing the context-dependent complexities of interde-

pendence among tasks and teammates. To counter the
limitations of the well-known Fitts’ HABA–MABA
(Humans-Are-Better-At; Machines-Are-Better-At) list
(Fitts, 1951), which was intended to summarize what
humans and machines each do well on their own, Robert
Hoffman has summarized the findings of David Woods
in an ‘‘un-Fitts list’’ (Table 1), which emphasizes how
the competencies of humans and machines can be
enhanced through appropriate forms of mutual interaction
(Hoffman et al., 2002).

None of this is to say that the pursuit of greater machine
autonomy should be abandoned. However, though continu-
ing research to make machines more active, adaptive, and
functional is essential, the point of increasing such profi-
ciencies is not merely to make the machines more indepen-

dent during times when unsupervised activity is desirable or
necessary (i.e., autonomy), but also to make them more
capable of sophisticated interdependent joint activity with
people and other machines when such is required—i.e.,
teamwork. The mention of joint activity highlights the need
for autonomous systems to support not only fluid orches-
tration of task handoffs among different people and

machines, but also combined participation on shared tasks
requiring continuous and close interaction—i.e., coactivity.
In contrast to the human-out-of-the-loop autonomy of

the RAA, NASA’s Portable Satellite Assistant (PSA)
prototype is an example of an autonomous system that
required close and continuous interaction with people
(Bradshaw et al., 2001; Gawdiak et al., 2000). The PSA
is a softball-sized flying robot prototype that was designed
to operate onboard manned and unmanned spacecraft,
collaborating with the limited number of crew members to
maintain complex systems, assist with life-critical environ-
mental health monitoring and regulation, coordinate doz-
ens of major simultaneous payload experiments, and
perform general housekeeping. Apple’s Siri, discussed by
Gruber in 2013 (Gruber, 2013), is another successful
instance of a collaborative agent that will continue to
incorporate an increasing range of autonomous capabil-
ities as it seeks to assist people with their everyday tasks. In
addition to such personal assistants, my colleagues and I
have been interested in exploring the potential of multi-
agent systems (Bradshaw, 1997) in collaborative tasks
ranging from coordinated operations of people carrying
out semi-structured missions with heterogeneous
unmanned robots (Johnson et al., 2008) to sensemaking
in cyber operations, where software agents and analysts
jointly engage in a process of progressive convergence to
identify emerging threats (Bradshaw et al., under review;
Bunch et al., 2012). We like to think of the latter as a form
of joint human-machine modeling that is consistent with
the constructivist thinking of George Kelly and the
elaborations of those of us who were inspired by his work,
including, among others, John Boose, Guy Boy, Ken Ford,
Brian Gaines, and Mildred Shaw (Bradshaw et al., 1993;
Ford and Bradshaw, 1993).

4. Teamwork knowledge

Building on the insights of Bill Clancey and Paul Compton,
Brian Gaines rightfully pointed out the importance of

Table 1

An ‘‘un-Fitts’’ list, & 2002 IEEE.

Machines

Are constrained in that: Need people to:

Sensitivity to context is low and is ontology-limited Keep them aligned to context

Sensitivity to change is low and recognition of anomaly is ontology-limited Keep them stable given the variability and change inherent in the world

Adaptability to change is low and is ontology-limited Repair their ontologies

They are not ‘‘aware’’ of the fact that the model of the world is itself in the

world

Keep the model aligned with the world

People

Are not limited in that: Yet they create machines to:

Sensitivity to context is high and is knowledge- and attention-driven Help them stay informed of ongoing events

Sensitivity to change is high and is driven by the recognition of anomaly Help them align and repair their perceptions because they rely on mediated

stimuli

Adaptability to change is high and is goal-driven Effect positive change following situation change

They are aware of the fact that the model of the world is itself in the world Computationally instantiate their models of the world

2In a significant step that has reversed years of precedent in autonomy

research, a 2012 US Task Force recommended ‘‘that the DoD abandon

the use of ‘levels of autonomy’’’ and instead focus their efforts to develop

a reference framework that emphasizes the importance of human–

computer collaboration (United States Department of Defense —

Defense Science Board, 2012), p. 4.
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‘‘practical knowledge’’ (Gaines, 1993) in models of human
expertise that drive the task-related behavior of many agent
systems. This kind of knowledge is usually represented in the
form of heuristics that serve to avoid disasters and to weakly
direct goals. Despite the shallow nature of such models, Brian
Gaines concluded that practical knowledge ‘‘can exhibit
robusty strategies’’ and ‘‘remarkable ‘adaptivity’ in that it
is insensitive to major changes in the domain in which it is
operating.’’

But this is only half the story. One of the most important
contributions of research on human-agent collaboration is
the finding that many aspects of effective joint activity rely
not only on the practical knowledge needed to execute a
task in isolation, but also on teamwork knowledge in the
form of principles, heuristics, and mechanisms for coordi-
nating joint work effectively. Pioneers in agent teamwork
research such as Cohen, Levesque, and Tambe concluded
early on that teamwork knowledge tends to be more
generic and reusable across different applications than
taskwork knowledge (Cohen and Levesque, 1991; Tambe
et al., 1999; Tambe et al., Kaminka). For this reason, many
kinds of teamwork knowledge can be modeled somewhat
separately from taskwork knowledge per se.

Teamwork knowledge is typically conceived in terms of
formalized social regulations. The idea of building strong
social regulation into intelligent systems can be traced at
least as far back as the 1940s to the science fiction writings
of Isaac Asimov (Asimov, 1942). Shoham and Tennenholtz
(Shoham and Tennenholtz, 1992) later introduced the
theme of social ‘‘laws’’ into the agent research community.
In addition to applying policy constraints to avoid dis-
asters in multi-agent systems, my colleagues and I have
attempted to develop reusable policies and mechanisms to
guide teamwork behavior (Feltovich et al., 2004; Feltovich

et al., 2006; Klein et al., 2004; Sierhuis et al., 2003). Like
Web-based knowledge used for human and machine
deliberation and like practical knowledge used by software
and robotic agents to perform taskwork, it can be
convenient to represent significant portions of this team-
work knowledge within ontologies (Bradshaw et al., 2011;
Bunch et al., Uszok; Uszok et al., 2008; Uszok et al., 2011).

5. Synthesis into a unified (and wise?) system

In 1985, Brian Gaines produced an early version of a
diagram predicting the future of knowledge systems, and
showing Wisdom as the pinnacle of that evolution (Fig. 1).
Four years later, I was honored to join Brian, along with
my mentor and friend John Boose (Boose, 1986; Boose and
Bradshaw, 1987; Bradshaw and Boose, 1990; Bradshaw
et al., 1991; Shema et al., 1990), in sending out a call for
papers for a Workshop on Wisdom-Based Systems that
was to take place on June 22–24, 1989 at the Rosario
Resort on Orcas Island in Washington state. Here is a
paragraph from that call:
Knowledge-based systems are now being applied to a

wide spectrum of applications. As new applications in
diplomacy, environmental management, jurisprudence,
corporate strategy, and others are developed, there is a
critical need to understand the limitations and potential of
future automated systems. Based on what we have learned
from attempts to represent knowledge in computer form,
what can we say about the possibility of representing
wisdom? Can knowledge-based systems recognize the
limits and proper application of their knowledge? Can
human values be used to enhance the effectiveness of such
systems during judgment and decision making? Will

Fig. 1. The evolution of knowledge systems (Gaines, 1985).
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human/computer participatory systems be developed that
improve the prospects for wisdom?

For a variety of reasons, perhaps in part due to a
recognition of our hubris in making the proposal in the
first place, the workshop never materialized. Note however
that, according to the figure, 2012 is the year of Wisdom.
Has the time now arrived to put out another call for
papers?
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