
Chapter 1

An Introduction to Software Agents

Jeffrey M. Bradshaw

Since the beginning of recorded history, people have been fascinated with
the idea of non-human agencies.1 Popular notions about androids, hu-
manoids, robots, cyborgs, and science fiction creatures permeate our cul-

ture, forming the unconscious backdrop against which software agents are per-
ceived. The word “robot,” derived from the Czech word for drudgery, became
popular following Karel Capek’s 1921 play RUR: Rossum Universal Robots.
While Capek’s robots were factory workers, the public has also at times em-
braced the romantic dream of robots as “digital butlers” who, like the mechani-
cal maid in the animated feature “The Jetsons,” would someday putter about
the living room performing mundane household tasks. Despite such innocuous
beginnings, the dominant public image of artificially intelligent embodied crea-
tures often has been more a nightmare than a dream. Would the awesome
power of robots reverse the master-slave relationship with humans? Everyday
experiences of computer users with the mysteries of ordinary software, riddled
with annoying bugs, incomprehensible features, and dangerous viruses rein-
force the fear that the software powering autonomous creatures would pose
even more problems. The more intelligent the robot, the more capable of pursu-
ing its own self-interest rather than its master’s. The more humanlike the robot,
the more likely to exhibit human frailties and eccentricities. Such latent con-
cerns cannot be ignored in the design of software agents—indeed, there is more
than a grain of truth in each of them!

Though automata of various sorts have existed for centuries, it is only with
the development of computers and control theory since World War II that any-
thing resembling autonomous agents has begun to appear. Norman (1997) ob-
serves that perhaps “the most relevant predecessors to today’s intelligent agents
are servomechanisms and other control devices, including factory control and
the automated takeoff, landing, and flight control of aircraft.” However, the
agents now being contemplated differ in important ways from earlier concepts.

Significantly, for the moment, the momentum seems to have shifted from hard-
ware to software, from the atoms that comprise a mechanical robot to the bits
that make up a digital agent (Negroponte 1997).2

Alan Kay, a longtime proponent of agent technology, provides a thumbnail
sketch tracing the more recent roots of software agents:

“The idea of an agent originated with John McCarthy in the mid-1950’s, and the
term was coined by Oliver G. Selfridge a few years later, when they were both at
the Massachusetts Institute of Technology. They had in view a system that, when
given a goal, could carry out the details of the appropriate computer operations and
could ask for and receive advice, offered in human terms, when it was stuck. An
agent would be a ‘soft robot’ living and doing its business within the computer’s
world.” (Kay 1984).

Nwana (1996) splits agent research into two main strands: the first beginning
about 1977, and the second around 1990. Strand 1, whose roots are mainly in dis-
tributed artificial intelligence (DAI), “has concentrated mainly on deliberative-
type agents with symbolic internal models.” Such work has contributed to an un-
derstanding of “macro issues such as the interaction and communication between
agents, the decomposition and distribution of tasks, coordination and cooperation,
conflict resolution via negotiation, etc.” Strand 2, in contrast, is a recent, rapidly
growing movement to study a much broader range of agent types, from the mo-
ronic to the moderately smart. The emphasis has subtly shifted from deliberation
to doing; from reasoning to remote action. The very diversity of applications and ap-
proaches is a key sign that software agents are becoming mainstream.

The gauntlet thrown down by early researchers has been variously taken up
by new ones in distributed artificial intelligence, robotics, artificial life, dis-
tributed object computing, human-computer interaction, intelligent and adap-
tive interfaces, intelligent search and filtering, information retrieval, knowledge
acquisition, end-user programming, programming-by-demonstration, and a
growing list of other fields. As “agents” of many varieties have proliferated,
there has been an explosion in the use of the term without a corresponding con-
sensus on what it means. Some programs are called agents simply because they
can be scheduled in advance to perform tasks on a remote machine (not unlike
batch jobs on a mainframe); some because they accomplish low-level computing
tasks while being instructed in a higher-level of programming language or
script (Apple Computer 1993); some because they abstract out or encapsulate the
details of differences between information sources or computing services
(Knoblock and Ambite 1997); some because they implement a primitive or ag-
gregate “cognitive function” (Minsky 1986, Minsky and Riecken 1994); some be-
cause they manifest characteristics of distributed intelligence (Moulin and
Chaib-draa 1996); some because they serve a mediating role among people and
programs (Coutaz 1990; Wiederhold 1989; Wiederhold 1992); some because
they perform the role of an “intelligent assistant” (Boy 1991, Maes 1997) some
because they can migrate in a self-directed way from computer to computer

4 BRADSHAW

(White 1996); some because they present themselves to users as believable char-
acters (Ball et al. 1996, Bates 1994, Hayes-Roth, Brownston, and Gent 1995);
some because they speak an agent communication language (Genesereth 1997,
Finin et al. 1997) and some because they are viewed by users as manifesting in-
tentionality and other aspects of “mental state” (Shoham 1997).

Out of this confusion, two distinct but related approaches to the definition of
agent have been attempted: one based on the notion of agenthood as an ascription
made by some person, the other based on a description of the attributes that soft-
ware agents are designed to possess. These complementary perspectives are sum-
marized in the section “What Is a Software Agent.” The subsequent section dis-
cusses the “why” of software agents as they relate to two practical concerns: 1)
simplifying the complexities of distributed computing and 2) overcoming the lim-
itations of current user interface approaches. The final section provides a chapter
by chapter overview of the remainder of the book.

What Is a Software Agent?

This section summarizes the two definitions of an agent that have been at-
tempted: agent as an ascription, and agent as a description.

‘Agent’ as an Ascription

As previously noted, one of the most striking things about recent research and
development in software agents is how little commonality there is between dif-
ferent approaches. Yet there is something that we intuitively recognize as a
“family resemblance” among them. Since this resemblance cannot have to do
with similarity in the details of implementation, architecture, or theory, it must
be to a great degree a function of the eye of the beholder.3 “Agent is that agent
does”4 is a slogan that captures, albeit simplistically, the essence of the insight
that agency cannot ultimately be characterized by listing a collection of at-
tributes but rather consists fundamentally as an attribution on the part of some
person (Van de Velde 1995).5

This insight helps us understand why coming up with a once-and-for-all
definition of agenthood is so difficult: one person’s “intelligent agent” is another
person’s “smart object”; and today’s “smart object” is tomorrow’s “dumb pro-
gram.” The key distinction is in our expectations and our point of view. The
claim of many agent proponents is that just as some algorithms can be more eas-
ily expressed and understood in an object-oriented representation than in a pro-
cedural one (Kaehler and Patterson 1986), so it sometimes may be easier for de-
velopers and users to interpret the behavior of their programs in terms of agents
rather than as more run-of-the-mill sorts of objects (Dennett 1987).6

The American Heritage Dictionary defines an agent as “one that acts or has

AN INTRODUCTION TO SOFTWARE AGENTS 5

the power or authority to act… or represent another” or the “means by
which something is done or caused; instrument.” The term derives from the
present participle of the Latin verb agere: to drive, lead, act, or do.

As in the everyday sense, we expect a software agent to act on behalf of some-
one to carry out a particular task which has been delegated to it.7 But since it is
tedious to have to spell out every detail, we would like our agents to be able to
infer what we mean from what we tell it. Agents can only do this if they
“know” something about the context of the request. The best agents, then,
would not only need to exercise a particular form of expertise, but also take into
account the peculiarities of the user and situation.8 In this sense an agent fills the
role of what Negroponte calls a “digital sister-in-law:”

“When I want to go out to the movies, rather than read reviews, I ask my sister-in-
law. We all have an equivalent who is both an expert on movies and an expert on
us. What we need to build is a digital sister-in-law.

In fact, the concept of “agent” embodied in humans helping humans is often one
where expertise is indeed mixed with knowledge of you. A good travel agent
blends knowledge about hotels and restaurants with knowledge about you… A
real estate agent builds a model of you from a succession of houses that fit your
taste with varying degrees of success. Now imagine a telephone-answering agent, a
news agent, or an electronic-mail-managing agent. What they all have in common
is the ability to model you.” (Negroponte 1997).

While the above description would at least seem to rule out someone claim-
ing that a typical payroll system could be regarded as an agent, there is still
plenty of room for disagreement (Franklin and Graesser 1996). Recently, for ex-
ample, a surprising number of developers have re-christened existing compo-
nents of their software as agents, despite the fact that there is very little that
seems “agent-like” about them. As Foner (1993) observes:

“… I find little justification for most of the commercial offerings that call them-
selves agents. Most of them tend to excessively anthropomorphize the software, and
then conclude that it must be an agent because of that very anthropomorphization,
while simultaneously failing to provide any sort of discourse or “social contract” be-
tween the user and the agent. Most are barely autonomous, unless a regularly-sched-
uled batch job counts. Many do not degrade gracefully, and therefore do not inspire
enough trust to justify more than trivial delegation and its concomitant risks.”9

Shoham provides a practical example illustrating the point that although
anything could be described as an agent, it is not always advantageous to do so:

“It is perfectly coherent to treat a light switch as a (very cooperative) agent with the
capability of transmitting current at will, who invariably transmits current when it
believes that we want it transmitted and not otherwise; flicking the switch is sim-
ply our way of communicating our desires. However, while this is a coherent view,
it does not buy us anything, since we essentially understand the mechanism
sufficiently to have a simpler, mechanistic description of its behavior.” (Shoham
1993).10

6 BRADSHAW

Dennett (1987) describes three predictive stances that people can take toward
systems (table 1). People will choose whatever gives the most simple, yet reliable
explanation of behavior. For natural systems (e.g., collisions of billiard balls), it
is practical for people to predict behavior according to physical characteristics
and laws. If we understand enough about a designed system (e.g., an automo-
bile), we can conveniently predict its behavior based on its functions, i.e., what it
is designed to do. However as John McCarthy observed in his work on “advice-
takers” in the mid-1950’s, “at some point the complexity of the system becomes
such that the best you can do is give advice” (Ryan 1991). For example, to pre-
dict the behavior of people, animals, robots, or agents, it may be more appropri-
ate to take a stance based on the assumption of rational agency than one based
on our limited understanding of their underlying blueprints.11

Singh (1994) lists several pragmatic and technical reasons for the appeal of
viewing agents as intentional systems:

“They (i) are natural to us, as designers and analyzers; (ii) provide succinct descrip-
tions of, and help understand and explain, the behaviour of complex systems; (iii)
make available certain regularities and patterns of action that are independent of
the exact physical implementation of the agent in the system; and (iv) may be used
by the agents themselves in reasoning about each other.”

‘Agent’ As a Description

A more specific definition of “software agent” that many agent researchers
might find acceptable is: a software entity which functions continuously and au-
tonomously in a particular environment, often inhabited by other agents and
processes (Shoham 1997). The requirement for continuity and autonomy de-
rives from our desire that an agent be able to carry out activities in a flexible and
intelligent manner that is responsive to changes in the environment without re-
quiring constant human guidance or intervention. Ideally, an agent that func-
tions continuously in an environment over a long period of time would be able
to learn from its experience. In addition, we expect an agent that inhabits an en-
vironment with other agents and processes to be able to communicate and coop-
erate with them, and perhaps move from place to place in doing so.

AN INTRODUCTION TO SOFTWARE AGENTS 7

Physical Stance Predict based on physical characteristics and laws

Design Stance Predic t based on what it is designed to do

Intentional Stance Precit based on assumption of rational agency

Table 1. Dennett’s three predictive stances (from Sharp 1992, 1993).

All this being said, most software agents today are fairly fragile and special-
purpose beasts, no one of which can do very much of what is outlined above in a
generic fashion. Hence the term “software agent” might best be viewed as an um-
brella term that covers a range of other more specific and limited agent types
(Nwana 1996). Though as individuals the capabilities of the agents may be rather
restricted, in their aggregate they attempt to simulate the functions of a primitive
“digital sister-in-law,” as particular ones intimately familiar with the user and sit-
uation exchange knowledge with others who handle the details of how to obtain
needed information and services. Consistent with the requirements of a particular
problem, each agent might possess to a greater or lesser degree attributes like the
ones enumerated in Etzioni and Weld (1995) and Franklin and Graesser (1996):

• Reactivity: the ability to selectively sense and act

• Autonomy: goal-directedness, proactive and self-starting behavior

• Collaborative behavior: can work in concert with other agents to achieve a
common goal

• “Knowledge-level” (Newell 1982) communication ability: the ability to commu-
nicate with persons and other agents with language more resembling human-
like “speech acts” than typical symbol-level program-to-program protocols

• Inferential capability: can act on abstract task specification using prior
knowledge of general goals and preferred methods to achieve flexibility;
goes beyond the information given, and may have explicit models of self,
user, situation, and/or other agents.

• Temporal continuity: persistence of identity and state over long periods of
time12

• Personality: the capability of manifesting the attributes of a “believable”
character such as emotion

• Adaptivity: being able to learn and improve with experience

• Mobility: being able to migrate in a self-directed way from one host plat-
form to another.

To provide a simpler way of characterizing the space of agent types than
would result if one tried to describe every combination of possible attributes,
several in the agent research community have proposed various classification
schemes and taxonomies.

For instance, AI researchers often distinguish between weak and strong no-
tions of agency: agents of the latter variety are designed to possess explicit men-
talistic or emotional qualities (Shoham 1997; Wooldridge and Jennings 1995).
From the DAI community, Moulin and Chaib-draa have characterized agents
by degree of problem-solving capability:

“A reactive agent reacts to changes in its environment or to messages from other
agents.… An intentional agent is able to reason on its intentions and beliefs, to cre-
ate plans of actions, and to execute those plans.… In addition to intentional agent

8 BRADSHAW

capabilities, a social agent possesses explicit models of other agents.” (Moulin and
Chaib-draa 1996, pp. 8-9).

An influential white paper from IBM (Gilbert et al. 1995) described intelli-
gent agents in terms of a space defined by the three dimensions of agency, intel-
ligence, and mobility (figure 1):

“Agency is the degree of autonomy and authority vested in the agent, and can be mea-
sured at least qualitatively by the nature of the interaction between the agent and
other entities in the system. At a minimum, an agent must run asynchronously. The
degree of agency is enhanced if an agent represents a user in some way… A more ad-
vanced agent can interact with… data, applications,… services… [or] other agents.

Intelligence is the degree of reasoning and learned behavior: the agent’s ability
to accept the user’s statement of goals and carry out the task delegated to it. At a
minimum, there can be some statement of preferences… Higher levels of intel-
ligence include a user model… and reasoning.… Further out on the intelli-
gence scale are systems that learn and adapt to their environment, both in terms
of the user’s objectives, and in terms of the resources available to the agent…

Mobility is the degree to which agents themselves travel through the net-
work… Mobile scripts may be composed on one machine and shipped to another
for execution… [Mobile objects are] transported from machine to machine in
the middle of execution, and carrying accumulated state data with them.”

Nwana (1996) proposes a typology of agents that identifies other dimensions
of classification. Agents may thus be classified according to:

• Mobility, as static or mobile

• Presence of a symbolic reasoning model, as deliberative or reactive

AN INTRODUCTION TO SOFTWARE AGENTS 9

Agency

Mobility Intelligence

Intelligent
Agents

Static
Mobile scripts

Mobile objects

Service interactivity

Application interactivity

Data interactivity
Representation of user

Asynchrony

Preferences
Reasoning

Planning
Learning

Expert Systems

F
ix

ed
-F

un
ct

io
n

A
ge

nt
s

Figure 1. Scope of intelligent agents (Adapted from Gilbert et al. 1995).

• Exhibition of ideal and primary attributes, such as autonomy, cooperation,
learning. From these characteristics, Nwana derives four agent types: col-
laborative, collaborative learning, interface, and smart (see figure 2).

• Roles, as information or Internet

• Hybrid philosophies, which combine two or more approaches in a single
agent

• Secondary attributes, such as versatility, benevolence, veracity, trustworthi-
ness, temporal continuity, ability to fail gracefully, and mentalistic and
emotional qualities.

After developing this typology, Nwana goes on to describe ongoing research
in seven categories: collaborative agents, interface agents, mobile agents, informa-
tion/Internet agents, reactive agents, hybrid agents, and smart agents.

After listing several definitions given by others, Franklin and Graesser (1996)
give their own: “an autonomous agent is a system situated within and part of an
environment that senses that environment and acts on it, over time, in pursuit
of its own agenda and so as to effect what it senses in the future.” Observing
that by this definition even a thermostat could qualify as an agent, they discuss
various properties of agents and offer the taxonomy in figure 3 as one that cov-
ers most of the examples found in the literature. Below this initial classification,
they suggest that agents can be categorized by control structures, environments
(e.g., database, file system, network, Internet), language in which they are writ-
ten, and applications.

Finally, Petrie (1996) discusses the various attempts of researchers to distin-
guish agents from other types of software. He first notes the difficulties in satis-
factorily defining intelligence and autonomy. Then he shows how most of the

10 BRADSHAW

Cooperate Learn

Autonomous

Smart
Agents

Collaborative
Agents

Collaborative
Learning
Agents

Interface
Agents

Figure 2. Typology based on Nwana’s (Nwana 1996) primary attribute dimension.

current web-based searching and filtering “agents,” though useful, “are essen-
tially one-time query answering mechanisms” that are adequately described by
the less glamorous computer science term “server.” Similarly, “mobile process”
would be a less confusing term than “mobile agent” for those Java applets
whose only “agent-like” function is to allow processes to run securely on foreign
machines. In contrast to these previous attempts to describe a set of unambigu-
ous defining characteristics for agents in general, Petrie argues the case for one
specific class: typed-message agents. Typed-message agents are distinguished from
other types of software by virtue of their ability to communicate as a community
using a shared message protocol such as KQML. In the shared message protocol,
at least some of the message semantics “are typed and independent of the appli-
cations. And semantics of the message protocol necessitate that the transport
protocol not be only client/server but rather a peer-to-peer protocol. An individ-
ual software module is not an agent at all if it can communicate with the other
candidate agents only with a client/server protocol without degradation of the
collective task performance.”

Time and experience will ultimately determine both the meaning and the
longevity of the term “agent.” Like many other computing terms in common
usage such as “desktop,” “mouse,” and “broker,” it began with a metaphor but
will end up denoting concrete software artifacts. As public exposure to useful
and technically viable implementations of agent software increases, the term
will either come to mean something that everyone understands because they
have seen many examples of it, or it will fall into disuse because it describes a
concept that is no longer appropriate. What is unlikely to disappear are the mo-
tivations that have incited the development of agent-based software. These are
described in the following section.

AN INTRODUCTION TO SOFTWARE AGENTS 11

Autonomous Agents

Biological
Agents

Robotic
Agents

Software Agents Artificial Life
Agents

Task-specific
Agents

Entertainment
Agents

Viruses

Figure 3. Franklin and Graesser’s (1996) agent taxonomy.

Why Software Agents?

While the original work on agents was instigated by researchers intent on study-
ing computational models of distributed intelligence, a new wave of interest has
been fueled by two additional concerns of a practical nature: 1) simplifying the
complexities of distributed computing and 2) overcoming the limitations of cur-
rent user interface approaches.13 Both of these can essentially be seen as a contin-
uation of the trend toward greater abstraction of interfaces to computing ser-
vices. On the one hand, there is a desire to further abstract the details of
hardware, software, and communication patterns by replacing today’s program-
to-program interfaces with more powerful, general, and uniform agent-to-agent
interfaces; on the other hand there is a desire to further abstract the details of the
human-to-program interface by delegating to agents the details of specifying and
carrying out complex tasks. Grosof (Harrison, Chess, and Kershenbaum 1995)
argues that while it is true that point solutions not requiring agents could be de-
vised to address many if not all of the issues raised by such problems, the aggre-
gate advantage of agent technology is that it can address all of them at once.

In the following two subsections, I discuss how agents could be used to ad-
dress the two main concerns I have mentioned. Following this, I sketch a vision
of how “agent-enabled” system architectures of the future could provide an un-
precedented level of functionality to people.

Simplifying Distributed Computing

Barriers to Intelligent Interoperability. Over the past several years, Brodie
(1989) has frequently discussed the need for intelligent interoperability in
software systems. He defines the term to mean intelligent cooperation
among systems to optimally achieve specified goals. While there is little dis-
agreement that future computing environments will consist of distributed
software systems running on multiple heterogeneous platforms, many of
today’s most common configurations are, for all intents and purposes, dis-
joint: they do not really communicate or cooperate except in very basic ways
(e.g., file transfer, print servers, database queries) (figure 4). The current
ubiquity of the Web makes it easy to forget that until the last few years,
computer systems that could communicate typically relied on proprietary or
ad hoc interfaces for their particular connection. The current growth in pop-
ularity of object-oriented approaches and the development of a few impor-
tant agreed-upon standards (e.g., TCP/IP, HTTP, IIOP, ODBC) has brought a
basic level of encapsulated connectivity to many systems and services. In-
creasingly, these connections are made asynchronously through message
passing, in situations where the advantages of loose coupling in complex co-
operating systems can be realized (Mellor 1994; Perrow 1984; Shaw 1996).

We are now in the midst of a shift from the network operating system to In-

12 BRADSHAW

ternet and intranet-based network computing (Lewis 1996). As this transition
takes place, we are seeing the proliferation of operating system-independent in-
teroperable network services such as naming, directory, and security. These,
rather than the underlying operating systems, are defining the network, reduc-
ing the operating systems to commodities. Lewis (1996) asserts that Netscape is
the best example of a vendor focused exclusively on such a goal. Federations of
such vendors are defining standards-based operating system-independent ser-
vices (directory, security, transactions, Web, and so forth), truly universal server-
independent clients (Web browsers), and network-based application develop-
ment support (Java, JavaScript, ActiveX). In such approaches, both the client and
server operating systems become little more than a collection of device drivers.

Incorporating Agents as Resource Managers

A higher level of interoperability would require knowledge of the capabilities
of each system, so that secure task planning, resource allocation, execution,
monitoring, and, possibly, intervention between the systems could take place.
To accomplish this, an intelligent agent could function as a global resource
manager (figure 5).

Unfortunately, while a single agent might be workable for small networks of
systems, such a scheme quickly becomes impractical as the number of cooperat-
ing systems grows. The activity of the single agent becomes a bottleneck for the
(otherwise distributed) system. A further step toward intelligent interoperabili-
ty is to embed one or more peer agents within each cooperating system (figure
6). Applications request services through these agents at a higher level corre-
sponding more to user intentions than to specific implementations, thus providing

AN INTRODUCTION TO SOFTWARE AGENTS 13

Disjoint

Ad hoc

Encapsulated

Figure 4. Evolution of system connectivity (Adapted from Brodie 1989).

a level of encapsulation at the planning level, analogous to the encapsulation
provided at the lower level of basic communications protocols. As agents in-
creasingly evolve from stationary entities to mobile ones, we will see an even
more radical redefinition of distributed object computing within corporate net-
works and on the World Wide Web (Chang and Lange 1996). These scenarios
presume, of course, timely agreement on basic standards ensuring agent inter-
operability (Gardner 1996; Lange 1996; Virdhagriswaran, Osisek, and O’Con-
nor 1995; White 1997).

Overcoming User Interface Problems

Limitations of Direct Manipulation Interface. A distinct but complementary
motivation for software agents is in overcoming problems with the current gen-
eration of user interface approaches. In the past several years, direct manipula-
tion interfaces (Hutchins, Hollan, and Norman 1986; Shneiderman 1983; Shnei-
derman 1984; Smith, et al. 1982) have become the standard. For many of the
most common user tasks, they are a distinct improvement over command-line
interfaces. Since direct manipulation requires software objects to be visible,
users are constantly informed about the kinds of things they can act upon. If, in
addition, the objects have a natural correspondence to real-world or metaphori-
cal counterparts, users can apply previously acquired experience to more quick-
ly learn what the objects can do and how to do it. Many advantages of direct
manipulation begin to fade, however, as tasks grow in scale or complexity. For
example, anyone who has had much experience with iconic desktop interfaces
knows that there are times when sequences of actions would be better automat-
ed than directly performed by the user in simple, tedious steps.14 Several re-
searchers have analyzed the limitations of passive artifact metaphors for com-

14 BRADSHAW

A

Figure 5. Cooperating systems with single agent as a global planner. Connections
represent agent-to-application communication (Adapted from Brodie 1989).

plex tasks (diSessa 1986; Erickson 1996; Kay 1990; Whittaker 1990). Among
others, people are likely to encounter the following problems:

• Large search space: In large distributed systems it is difficult to find what
we need through browsing or the use of traditional indexing methods.
What is practical and possible for a few hundred items becomes unwieldy
and impossible for several thousand.

• Actions in response to immediate user interaction only: Sometimes instead of
executing an action immediately, we want to schedule it for a specific time
in the future. Or, we may want to have software automatically react to sys-
tem-generated events when we are away from the machine.

• No composition: With most direct manipulation interfaces, we cannot easily
compose basic actions and objects into higher-level ones.

• Rigidity: The consistency that makes passive artifact interfaces predictable
and easy-to-learn for simple tasks makes them brittle and untrustworthy
for complex ones.

• Function orientation: Software is typically organized according to generic
software functions rather than the context of the person’s task and situation.

• No improvement of behavior: Traditional software does not notice or learn
from repetitive actions in order to respond with better default behavior.

Indirect Management Using Agents

Researchers and developers are attempting to address these problems by com-
bining the expression of user intention through direct manipulation with the
notion of an indirect management style of interaction (Kay 1990). In such an ap-

AN INTRODUCTION TO SOFTWARE AGENTS 15

A

A

A A

A

Figure 6. Cooperating systems with distributed agents. Connecting lines represent on-
going agent-to-agent communication (Adapted from Brodie 1989).

proach, users would no longer be obliged to spell out each action for the com-
puter explicitly; instead, the flexibility and intelligence of software agents would
allow them to give general guidelines and forget about the details.

Many of the actions now performed by users could be delegated to various
software agents. Thus, in a glimpse of the future, Tesler (1991) imagines the fol-
lowing directives being given by a person to a software agent:

• On what date in February did I record a phone conversation with Sam?

• Make me an appointment at a tire shop that is on my way home and is
open after 6 PM.

• Distribute this draft to the rest of the group and let me know when they’ve
read it.

• Whenever a paper is published on fullerene molecules, order a copy for my
library.

Later on in the day, Tesler imagines the agent catching up to the person with
these follow-up messages:

• You asked me when you last recorded a phone conversation with Sam. It
was on February 27. Shall I play the recording?

• You scribbled a note last week that your tires were low. I could get you an
appointment for tonight.

• Laszlo has discarded the last four drafts you sent him without reading any
of them.

• You have requested papers on fullerene research. Shall I order papers on
other organic microclusters as well?

Direct manipulation and indirect management approaches are not mutually ex-
clusive. Interface agent researchers are not out to completely do away with com-
puting as we know it, but more modestly hope that complementing see-and-
point interfaces with ask-and-delegate extensions will help reduce required
knowledge and simplify necessary actions while maintaining a sufficient level of
predictability. Specifically, the use of software agents will eventually help over-
come the limitations of passive artifact interfaces in the following ways (table 2):

• Scalability: Agents can be equipped with search and filtering capabilities that
run in the background to help people explore vast sources of information.

• Scheduled or event-driven actions: Agents can be instructed to execute tasks
at specific times or automatically “wake up” and react in response to sys-
tem-generated events.

• Abstraction and delegation: Agents can be made extensible and composable
in ways that common iconic interface objects cannot. Because we can
“communicate” with them, they can share our goals, rather than simply
process our commands. They can show us how to do things and tell us
what went wrong (Miller and Neches 1987).

• Flexibility and opportunism: Because they can be instructed at the level of

16 BRADSHAW

goals and strategies, agents can find ways to “work around” unforeseen
problems and exploit new opportunities as they help solve problems.

• Task orientation: Agents can be designed to take the context of the person’s
tasks and situation into account as they present information and take action.

• Adaptivity: Agents can use learning algorithms to continually improve
their behavior by noticing recurrent patterns of actions and events.

Toward Agent-Enabled System Architectures

In the future, assistant agents at the user interface and resource-managing
agents behind the scenes will increasingly pair up to provide an unprecedented
level of functionality to people. A key enabler is the packaging of data and soft-
ware into components that can provide comprehensive information about
themselves at a fine-grain level to the agents that act upon them.

Over time, large undifferentiated data sets will be restructured into smaller el-
ements that are well-described by rich metadata, and complex monolithic appli-
cations will be transformed into a dynamic collection of simpler parts with self-
describing programming interfaces. Ultimately, all data will reside in a
“knowledge soup,” where agents assemble and present small bits of information
from a variety of data sources on the fly as appropriate to a given context (figure
7) (Neches et al. 1991; Sowa 1990). In such an environment, individuals and
groups would no longer be forced to manage a passive collection of disparate
documents to get something done. Instead, they would interact with active
knowledge media (Barrett 1992; Bradshaw et al. 1993b; Brown and Duguid 1996;
Glicksman, Weber, and Gruber 1992; Gruber, Tenenbaum, and Weber 1992)
that integrate needed resources and actively collaborate with them on their tasks.

Figure 7 illustrates the various roles agents could play in an agent-enabled sys-
tem architecture. Some could act in the role of intelligent user interface managers,

AN INTRODUCTION TO SOFTWARE AGENTS 17

Typical Limitations of Direct Manipulation
Interfaces

Advantages of Agent-Oriented Approach

Large search space Scalability

Actions in response to immediate user
interaction only

Scheduled or event-driven actions

No composition Abstraction and delegation

Rigidity Flexibility and opportunism

Function orientation Task orientation

No improvement of behavior Adaptivity

Table 2. Typical limitations of direct manipulation interfaces and
advantages of agent-oriented approach.

drawing on the resources of other agents working behind the scenes (Arens et al.
1991; Browne, Totterdell, and Norman 1990; Kay 1990; Neal and Shapiro 1994;
Sullivan and Tyler 1991). Such agents would work in concert to help coordinate
the selection of the appropriate display modes and representations for the relevant
data (Bradshaw and Boose 1992; Johnson et al. 1994), incorporating semantic rep-
resentations of the knowledge in the documents to enhance navigation and infor-
mation retrieval (Boy 1992; Bradshaw and Boy 1993; Gruber, Tenenbaum, and
Weber 1992; Lethbridge and Skuce 1992; Mathé and Chen 1994). Because the lay-
out and content of the views would be driven by context and configuration mod-
els rather than by hand-crafted user-interface code, significant economies could be
realized as the data and software components are reused and semi-automatically
reconfigured for different settings and purposes. Some agents might be represent-
ed explicitly to the user as various types of personal assistants (Maes 1997). Ideally,
each software component would be “agent-enabled,” however for practical rea-
sons components may at times still rely on traditional interapplication communi-
cation mechanisms rather than agent-to-agent protocols.

Overview of the Book

The first subsection summarizes the first set of chapters under the heading of
“Agents and the User Experience,” which contain introductory pieces authored
by proponents (and a critic) of agent technology. The next set, “Agents for

18 BRADSHAW

A

A A

A

Integrated interface
to knowledge
media

Agent as
personal
assistant

Agents as intelligent
interface managers

Agent-to-agent
communication

Interapplication communication

Agents
behind the
scenes

A

Figure 7 An agent-enabled system architecture.

Learning and Intelligent Assistance,” describes how agents have been used to
enhance learning and provide intelligent assistance to users in situations where
direct manipulation interfaces alone are insufficient. The final set, “Agent Com-
munication, Collaboration, and Mobility,” details various approaches to agent-
oriented programming, agent-to-agent communication, and agent mobility, as
well as the use of agents to provide intelligent interoperability between loosely-
coupled components of distributed systems.

Agents and the User Experience

How Might People Interact with Agents? Norman’s (1997) introductory chap-
ter sets the stage for the first section of the book. “Agents occupy a strange place
in the realm of technology,” he opens, “leading to much fear, fiction, and extrav-
agant claims.” Because the new crop of intelligent agents differ so significantly
in their computational power from their predecessors, we need to take into ac-
count the social issues no less than the technical ones if our designs are to be ac-
ceptable to people:

“The technical aspect is to devise a computational structure that guarantees that
from the technical standpoint, all is under control. This is not an easy task.

The social part of acceptability is to provide reassurance that all is working accord-
ing to plan… This is [also] a non-trivial task.”

The reassurance that all is working according to plan is provided by an un-
derstandable and controllable level of feedback about the agent’s intentions and
actions. We must also think about how to accurately convey the agent’s capabili-
ties and limitations so that people are not misled in their expectations. Part of
the problem is the natural overenthusiasm of agent researchers; part of the
problem is people’s tendency to falsely anthropomorphize.15 Although designers
can carefully describe agent capabilities and limitations within accompanying
instructional manuals, it is even more important to find clever ways to weave
this information naturally and effectively into the agent interface itself.

Safety and privacy are additional concerns. “How does one guard against
error, maliciousness (as in the spread of computer viruses), and deliberate intent
to pry and probe within one’s personal records?” Legal policies to address these
issues must be formulatedimmediately, at local, national, and global levels.

A final concern is how to design the appropriate form of interaction between
agents and people. For example, how do ordinary people program the agent to
do what they want? While programming-by-demonstration or simplified visual
or scripting languages have been suggested, none of them seem adequate to spec-
ify the kinds of complex tasks envisioned for future intelligent agents.16

Since “agents are here to stay,” we must learn how to cope with the dan-
gers along with the positive contributions. “None of these negative aspects of
agents are inevitable. All can be eliminated or minimized, but only if we

AN INTRODUCTION TO SOFTWARE AGENTS 19

consider these aspects in the design of our intelligent systems.”

Agents: From Direct Manipulation to Delegation. In his chapter, Nicholas Ne-
groponte (1997), a longtime champion of agent technology (Negroponte 1970,
1995), extols the virtues of delegation in intelligent interfaces:

“The best metaphor I can conceive of for a human-computer interface is that of a
well-trained English butler. The “agent” answers the phone, recognizes the callers,
disturbs you when appropriate, and may even tell a white lie on your behalf. The
same agent is well trained in timing… and respectful of idiosyncrasies. People who
know the butler enjoy considerable advantage over a total stranger. That is just
fine.” (Negroponte 1997.)

What will such digital butlers do? They will filter, extract, and present the
relevant information from bodies of information larger than we could ordinari-
ly digest on their own. They will act as “digital sisters-in-law,” combining their
knowledge of information and computing services with intimate knowledge
about the person on whose behalf they are acting.

To create agents that are intelligent enough to perform these tasks to our
level of satisfaction, we will need to re-open profound and basic questions of in-
telligence and learning that past AI research has left largely untouched. An un-
derstanding of decentralized approaches to intelligence is key: coherence can
emerge from the activity of independent agents who coordinate their actions in-
directly through shared external influences in their common environment.17

User interface design will also be decentralized. Instead of being an effort by
professionals to produce the best interface for the masses, it will become an indi-
vidual affair, driven more by the personalized intelligence of one’s local agents
than the blanket application of general human-factors knowledge. The agent’s
long-time familiarity with a person, gained by numerous shared experiences,
will be critical to the new beyond-the-desktop metaphor. Though direct manip-
ulation has its place, Negroponte believes that most people would prefer to run
their home and office life with a gaggle of well-trained butlers.

Interface Agents: Metaphors with Character. The thesis of Laurel’s (1997) chap-
ter is that unabashed anthropomorphism in the design of interface agents is
both natural and appropriate:

“First, this form of representation makes optimal use of our ability to make accu-
rate inferences about how a character is likely to think, decide, and act on the basis
of its external traits. This marvelous cognitive shorthand is what makes plays and
movies work… Second, the agent as character (whether humanoid, canine, car-
toonish, or cybernetic) invites conversational interaction… [without necessarily re-
quiring] elaborate natural language processing… Third, the metaphor of character
successfully draws our attention to just those qualities that form the essential na-
ture of an agent: responsiveness, competence, accessibility, and the capacity to per-
form actions on our behalf.”

Recognizing the considerable resistance many will have to this idea, she responds

20 BRADSHAW

to some of the most common criticisms. First, is the objection to having to face
“whining, chatting little irritants” each time you turn on the machine. Laurel
notes that the problem is not “agents per se, but rather the traits they are assumed
to possess.” To address this problem, we must allow the traits of agents to be fully
user-configurable. Another criticism is the indirection implied by the presence of
an agent, “Why should I have to negotiate with some little dip in a bowtie when
I know exactly what I want to do?” The answer is that if you know what you
want to do and if you want to do it yourself, the agent should quickly get out of
your way. Agent-based assistance should be reserved for tedious or complex tasks
that you don’t want to do yourself, and that you are comfortable entrusting to a
software entity. Will people’s acquired habit of bossing agents around lead them
to treating real people the same way? Laurel argues that this is a real issue, but
should not be handled by repression of the dramatic form—rather it should be
addressed as an ethical problem for agent designers and the culture at large. Fi-
nally, there is the oft-heard criticism that “AI doesn’t work.” Laurel counters
with examples of successful use of AI techniques in well-defined domains. More-
ove, she asserts that most agents do not need a full-blown “artificial personality,”
but can be implemented much more simply.

Laurel concludes with a discussion of key characteristics of interface agents
(agency, responsiveness, competence, and accessibility) and of an R&D agenda
that includes an appreciation of the contribution of studies of story generation
and dramatic character.18

Designing Agents as if People Mattered. Erickson (1997) explores the many
difficulties surrounding adaptive functionality and the agent metaphor. With
respect to adaptive functionality, he describes three design issues raised in a
study of users of the DowQuest information retrieval system. In brief, people
need to understand what happened and why when a system alters its response;
they need to be able to control the actions of a system, even when it does not al-
ways wait for the user’s input before it makes a move; and they need to predict
what will happen, even though the system will change its responses over time.
Several approaches to these problems have been suggested, including: providing
users with a more accurate model of what is going on, managing overblown ex-
pectations of users at the beginning so they are willing to persist long enough to
benefit from the system’s incremental learning, and constructing a plausible
‘fictional’ model of what is going on.

Given the potential of the agent metaphor as a possible fiction for portraying
system functionality, Erickson examines three strands of research that shed
some light on how well this approach might work. Designed to encourage stu-
dents to explore an interactive encyclopedia, the Guides project allowed re-
searchers to observe the kinds of attributions and the level of emotional engage-
ment people had with stereotypic characters that assisted in navigation.
Erickson also reviews the extensive research that Nass and his colleagues have

AN INTRODUCTION TO SOFTWARE AGENTS 21

performed on the tendency of people to use their knowledge of people and so-
cial rules to make judgments about computers. Finally, he discusses recent re-
search on the reaction of people to extremely realistic portrayals of agents.

In the final section of the chapter, Erickson contrasts the desktop object and
agent conceptual models, and argues that they can be used together in the same
interface so long as they are clearly distinguished from one another. Specific
computing functionality can be portrayed either as an object or an agent, de-
pending on what is most natural. The desktop metaphor takes advantage of
users’ previous knowledge that office artifacts are visible, are passive, have loca-
tions, and may contain things. “Objects stay where they are: nice, safe pre-
dictable things that just sit there and hold things.” Ontological knowledge of a
different sort comes into play when the agent metaphor is employed. Our com-
mon sense knowledge of what agents can do tells us that, unlike typical desktop
objects, they can notice things, carry out actions, know and learn things, and go
places.19 “Agents become the repositories for adaptive functionality.” The over-
all conclusion is that research “which focuses on the portrayal of adaptive func-
tionality, rather than on the functionality itself, is a crucial need if we wish to
design agents that interact gracefully with their users.”

Direct Manipulation Versus Agents: Paths to Predictable, Controllable, and
Comprehensible Interfaces. Breaking with the tone of cautious optimism ex-
pressed in the preceding chapters, Shneiderman, a longtime advocate of direct
manipulation, is troubled by the concept of intelligent interfaces in general:

“First, such a classification limits the imagination. We should have much greater
ambition than to make a computer behave like an intelligent butler or other
human agent…

Second, the quality of predictability and control are desirable. If machines are in-
telligent or adaptive, they may have less of these qualities…

[Third,] I am concerned that if designers are successful in convincing the users that
computers are intelligent, then the users will have a reduced sense of responsibility
for failures…

Finally,… [m]achines are not people… [and if] you confuse the way you treat machines
with the way you treat people… you may end up treating people like machines.”20

Shneiderman backs up his general concerns with lessons from past disappoint-
ments in natural language systems, speech I/O, intelligent computer-assisted in-
struction, and intelligent talking robots.

Shneiderman observes that agent proponents have not come up with good
definitions of what is and is not an agent. “Is a compiler an agent? How about
an optimizing compiler? Is a database query an agent? Is the print monitor an
agent? Is e-mail delivered by an agent? Is a VCR scheduler an agent?” His ex-
amination of the literature reveals six major elements of the agent approach: an-
thropomorphic presentation, adaptive behavior, acceptance of vague goal
specification, gives you what you need, works while you don’t, and works

22 BRADSHAW

where you aren’t. The first three, on closer examination, seem counterproduc-
tive, while the last three are good ideas that could be achieved by other means.

The alternative to a vision of computers as intelligent machines is that of pre-
dictable and controllable user interfaces, based on direct manipulation of repre-
sentations of familiar objects. Shneiderman concludes with a description of two
examples from his own lab (tree maps and dynamic queries) that show the
power of visual, animated interfaces “built on promising strategies like infor-
mative and continuous feedback, meaningful control panels, appropriate pref-
erence boxes, user-selectable toolbars, rapid menu selection, easy-to-create
macros, and comprehensible shortcuts.” These, he argues, rather than vague vi-
sions of intelligent machines, will allow users to specify computer actions rapid-
ly, accurately, and confidently.

Agents for Learning and Intelligent Assistance

Agents for Information Sharing and Coordination: A History and Some Reflec-
tions. The chapter by Malone, Grant, and Lai (1997) reviews more than ten
years of seminal work on a series of programs which were intended to allow un-
sophisticated computer users to create their own cooperative work applications
using a set of simple, but powerful, building blocks. The work is based on two
key design principles, which each imply a particular kind of humility that
should be required of agent designers:

“1. Don’t build computational agents that try to solve complex problems all by them-
selves. Instead, build systems where the boundary between what the agents do and
what the humans do is a flexible one. We call this the principle of semiformal systems…

2. Don’t build agents that try to figure out for themselves things that humans
could easily tell them. Instead, try to build systems that make it as easy as possible
for humans to see and modify the same information and reasoning processes their
agents are using. We call this the principle of radical tailorability…”

Information Lens, the first program in the series, was a system for intelligent
sorting and processing of electronic mail messages. Object Lens and Oval were
successor programs providing much more general and tailorable environments
that extended beyond the domain of electronic mail filtering.

The name “Oval” is an acronym for the four key components of the system:
objects, views, agents, and links. “By defining and modifying templates for
various semi-structured objects, users can represent information about people,
tasks, products, messages, and many other kinds of information in a form that
can be processed intelligently by both people and their computers. By collect-
ing these objects in customizable folders, users can create their own views
which summarize selected information from the objects. By creating semi-au-
tonomous agents, users can specify rules for automatically processing this in-
formation in different ways at different times. Finally, links, are used for con-
necting and relating different objects” (Lai and Malone 1992).

AN INTRODUCTION TO SOFTWARE AGENTS 23

The authors describe several different applications that were created to show the
power and generality of the Oval approach.21 All these demonstrate the surprising
power that semiformal information processing can provide to people, and lend cre-
dence to the claim that people without formal programming skills can be enabled
to create agent-based computing environments that suit their individual needs.

Agents that Reduce Work and Information Overload. While the developers of
Oval have explored ways to simplify agent authoring, Pattie Maes and her col-
leagues at MIT have pursued an approach that allows personal assistants to learn
appropriate behavior from user feedback (Maes 1997). The personal assistant
starts out with very little knowledge and over time becomes more experienced,
gradually building up a relationship of understanding and trust with the user:

“[We] believe that the learning approach has several advantages over [end-user
programming and knowledge-based approaches]… First, it requires less work
from the end-user and application developer. Second, the agent can more easily
adapt to the user over time and become customized to individual and organiza-
tional preferences and habits. Finally, the approach helps in transferring informa-
tion, habits and know-how among the different users of a community.”

A learning agent acquires its competence from four different sources. First, it
can “look over the shoulder” of users as they perform actions. Second, it can
learn through direct and indirect feedback from the user. Indirect feedback is
provided when the user ignores the agent’s suggested action. Third, the agent
can learn from user-supplied examples. Finally, the agent can ask advice from
other users’ agents that have may have more experience with the same task.
Two assumptions determine whether the learning approach is appropriate for a
given application:

1. The application should involve a significant amount of repetitive behavior.
Otherwise, there would be no consistent situation-action patterns for the
agent to learn.

2. Repetitive behavior should be different for different users. Otherwise, the be-
havior could be more efficiently hard-coded once and for all in a program,
rather than implemented using learning agents.

Maes describes four agent-based applications built using the learning ap-
proach: electronic mail handling (Maxims), meeting scheduling,22 Usenet Net-
news filtering (Newt), and recommending books, music or other forms of enter-
tainment (Ringo)23 Through clever user feedback mechanisms and tailoring
options, this approach provides a great deal of functionality from the combina-
tion of relatively simple mechanisms.

KidSim: Programming Agents without a Programming Language. Like Mal-
one and his colleagues, Smith, Cypher, and Spohrer (1997) have focused their at-
tention on the problem of agent authoring. What is unique to their application,
however, is that they are trying to create a general and powerful tool for use by

24 BRADSHAW

children. To make this possible, they have adopted a “languageless” approach:

“We decided that the question is not: what language can we invent that will be eas-
ier for people to use? The question is: should we be using a language at all?…
We’ve come to the conclusion that since all previous languages have been unsuc-
cessful…, language itself is the problem..

… [The] graphical user interface eliminated command lines by introducing visual
representations for concepts and allowing people to directly manipulate those rep-
resentations… Today all successful editors on personal computers follow this ap-
proach. But most programming environments do not. This is the reason most peo-
ple have an easier time editing than programming.”

KidSim24 (now called “Cocoa”) is a tool kit where children can build worlds
populated by agents that they program themselves by demonstration and direct
manipulation. Existing agents (simulation objects) can be modified, and new ones
can be defined from scratch. Although agents cannot inherit from one another,
they can share elements such as rules. In keeping with the design philosophy of
direct manipulation, all elements of the simulation are visible in the interface.

“Languageless” programming is accomplished by combining two ideas: graph-
ical rewrite rules, and programming-by-demonstration.25 Graphical rewrite rules
define transformations of a region of the game board from one state to another.
Programming-by-demonstration is accomplished by letting the child put the sys-
tem into “record mode” to capture all actions and replay them. A major strength
of KidSim is that the results of recording user actions can be shown graphically,
rather than as a difficult-to-understand script, as in most other such systems.

The authors describe a series of classroom studies in which children from
ages eight to fourteen have used development versions of KidSim. The studies
have led to a refinement of many of the concepts in KidSim, and have in turn
provided convincing evidence that reasonably complex simulations of this sort
can be constructed by very young children. No doubt there are many agent ap-
plications for adults that could take advantage of similar principles to make
programming accessible.

Lifelike Computer Characters: The Persona Project at Microsoft. While many
software agent researchers are content to make agents that are merely “useful,”
others seek the more ambitious goal of making “complete” agents that are highly
visible in the user interface, project the illusion of being aware and intentioned,
and are capable of emotions and significant social interaction. The Persona pro-
ject (Ball et al. 1997) was formed to prototype possible interfaces to future com-
puter-based assistants, in this case a “conversational, anthropomorphic computer
character that will interact with the user to accept task assignments and report
results.” To be successful, such assistants will need to support interactive give
and take including task negotiation and clarifying questions, understand how
and when it is appropriate to interrupt the user with a report or request for

AN INTRODUCTION TO SOFTWARE AGENTS 25

input, and acknowledge the social and emotional impacts of interaction.
The creation of lifelike computer characters requires a wide variety of tech-

nologies and skills, including speech recognition, natural language understand-
ing, animation, and speech synthesis. A sophisticated understanding of subtle
dialogue mechanisms and social psychology is also essential. To add to this chal-
lenge, all the necessary computational machinery to support these technologies
must ultimately be able to run with acceptable performance on garden variety
computing platforms.

The application chosen for the project described in this chapter involves an
animated character (Personal Digital Parrot One, PDP1, or Peedy for short)
that acts as a knowledgeable compact disc changer: “The assistant can be
queried as to what CDs are available by artist, title or genre, additional infor-
mation can be obtained about the CDs, and a playlist can be generated.” Peedy
responds verbally and by doing things to spoken commands in a restricted sub-
set of natural language.

The application relies on two major technology components: reactive animation
and natural language. ReActor represents a visual scene and accompanying entities
such as cameras and lights hierarchically. The most interesting aspect of the anima-
tion is its reactivity, i.e., the fact that complex behaviors, including “emotion,” can
be triggered by user input. The natural language capability relies on the Whisper
speech recognition module and on a broad-coverage natural language parser.

The creation of such prototypes has allowed Ball and his colleagues to discov-
er and explore many little-understood aspects of human-computer interaction
and to point the way toward the creation of increasingly sophisticated lifelike
conversational assistants in the future.

Software Agents for Cooperative Learning. Boy’s chapter (1997) examines the
role of agents in learning technology. He briefly reviews significant trends of the
past, including computer-based training, intelligent tutoring systems, interac-
tive learning systems, and cooperative learning systems. Computer-supported
cooperative learning (CSCL) builds on the lessons learned from these past ap-
proaches to provide an environment where knowledge is exchanged via active
electronic documents.

Four requirements guide the design of active documents: 1. providing the ap-
propriate illusion that is useful and natural for the user to understand its content;
2. providing appropriate indexing and linking mechanisms to connect the docu-
ment with other relevant documents; 3. providing adaptivity so that over time
the document becomes increasingly tailored to the information requirements of
particular users; and 4. including dynamic simulations to enable people to under-
stand aspects of complex situations that cannot be adequately represented using
a static medium such as paper.

Software agents for cooperative learning are designed to transform standard
electronic documents into active ones. Drawing on extensive past research expe-

26 BRADSHAW

rience with the Situation Recognition and Analytical Reasoning (SRAR) model
and the knowledge block representation (Boy 1992; Boy 1991; Boy and Mathé
1993; Mathé and Chen 1994), he defines an agent in the context of this chapter
to be “a software entity that can be represented by a knowledge block with an
interface metaphor (appearance).”

As an example of an agent-based CSCL system Boy describes ACTIDOC, a
prototype environment for active documents that has been applied in the do-
main of physics instruction. ACTIDOC documents consist of an ordered set of
pages containing content and software agents (to make the content active). Each
agent contains a name, a context, a set of triggering conditions, a set of internal
mechanisms, and a set of interface metaphors. From Schank and Jona’s (1991)
six learning architectures, Boy derives classes of agents useful in active docu-
ment design: case-based learning agent, incidental learning agent, problem-solving
agent, video database agent, simulation agent, and suggestive-questions agent. Addi-
tionally he defines the roles of evaluation, instructor aid, and networking agents.
These are illustrated using a physics example that demonstrates one way that
agents can be used to make document content come alive.

The M System. Based on Minsky’s Society of Mind (SOM) theory (Minsky 1986),
the M system (Riecken 1997) is designed to provide intelligent assistance in a
broad range of tasks through the integration of different reasoning processes
(societies of agents). The architecture has previously been applied in the domains
of music composition and intelligent user interface agents; this paper describes
how M assists users of a desktop multimedia conferencing environment to clas-
sify and manage metaphorical electronic objects such as documents, ink, im-
ages, markers, white boards, copy machines, and staplers.

In the Virtual Meeting Room (VMR) application, participants collaborate
using pen-based computers and a telephone:

“Each user is supported by a personalized assistant, which attempts to recognize
and define relationships between domain objects, based on the actions performed
by the users and the resulting new states of the world. For example, VMR partici-
pants may perform actions on a group of electronic documents such as joining
them as a set or annotating them collectively. M attempts to identify all domain ob-
jects and classify relationships between various subsets based on their physical
properties and relevant user actions.”

Within M there are five major reasoning processes, each of which are viewed as
individual agents: spatial, structural, functional, temporal, and causal. Other more
simple agents function as supporting agents. Functioning as a set of SOM memo-
ry machines, these supporting agents represent conceptual knowledge about
things like color, shape, and spatial relationships. As an architecture of integrat-
ed agents, M dynamically generates, ranks, and modifies simultaneous theories
about what is going on in the VMR world. As a faithful implementation of
SOM theory, M provides for an I/O system, a spreading activation semantic net-

AN INTRODUCTION TO SOFTWARE AGENTS 27

work (to implement Minsky’s K-lines/polynemes), a rule-based system, a script-
ing system, a blackboard system (to implement Minsky’s trans-frames and
pronomes), and a history log file system.

To Riecken, an agent is fundamentally a simple, specialized “reasoning” pro-
cess, whereas an assistant is composed of many “agencies of agents:” “To handle a
common sense problem, one would not typically call on an agent—instead, one
would want an assistant endowed with the talents of many integrated agents.”

Agent Communication, Collaboration, and Mobility

An Overview of Agent-Oriented Programming. Agent-oriented programming
(AOP) is a term that Shoham (1977) has proposed for the set of activities necessary
to create software agents. What he means by ‘agent’ is “an entity whose state is
viewed as consisting of mental components such as beliefs, capabilities, choices,
and commitments.” Agent-oriented programming can be thought of as a special-
ization of object-oriented programming approach, with constraints on what kinds
of state-defining parameters, message types, and methods are appropriate. From
this perspective, an agent is essentially “an object with an attitude.”

An agent’s “mental state” consists of components such as beliefs, decisions,
capabilities, and obligations. Shoham formally describes the state in an exten-
sion of standard epistemic logics, and defines operators for obligation, decision,
and capability. Agent programs control the behavior and mental state of agents.
These programs are executed by an agent interpreter. In the spirit of speech act
theory, interagent communication is implemented as speech act primitives of
various types, such as inform, request, or refrain.

An agent interpreter assures that each agent will iterate through two steps at
regular intervals: 1) read the current messages and update its mental state (in-
cluding beliefs and commitments), and 2) execute the commitments for the cur-
rent time, possibly resulting in further belief change. Shoham’s original agent in-
terpreter, AGENT-0, implements five language elements: fact statements (“Smith
is an employee of Acme”), communicative action statements (inform, request, re-
frain), conditional action statements (“If, at time t, you believe that Smith is an em-
ployee of Acme, then inform agent A of the fact”), variables, and commitment
rules (“If you receive message x while in the mental state y, perform action z”).

The basic concepts described by Shoham have influenced the direction of
many other agent researchers. He and his colleagues have continued their inves-
tigations on several fronts including mental states, algorithmic issues, the role of
agents in digital libraries, and social laws among agents.

KQML as an Agent Communication Language. While Shoham’s definition of an
agent is built around a formal description of its mental state, other groups of re-
searchers have taken agent communication as their point of departure.26 In this

28 BRADSHAW

chapter, Finin, Labrou and Mayfield (1997) justify such a rationale as follows:

“The building block for intelligent interaction is knowledge sharing that includes
both mutual understanding of knowledge and the communication of that knowledge.
The importance of such communication is emphasized by Genesereth, who goes so far
as to suggest that an entity is a software agent if and only if it communicates correctly
in an agent communication language (Genesereth and Ketchpel 1994). After all, it is
hard to picture cyberspace with entities that exist only in isolation; it would go against
our perception of a decentralized, interconnected electronic universe.”

After an overview of the work of the Knowledge Sharing Effort (KSE) con-
sortium (Neches et al. 1991) to tackle various issues relating to software agents
and interoperability, the authors focus on one particular result of the effort:
KQML (Knowledge Query Manipulation Language).

The authors suggest seven categories of requirements for an agent communi-
cation language:

• Form. It should be declarative, syntactically simple, and easily readable by
people and programs.

• Content. A distinction should be made between the language that expresses
communicative acts (“performatives”) and the language that conveys the
content of the message.

• Semantics. The semantics should exhibit those desirable properties expect-
ed of the semantics of any other language.

• Implementation. The implementation should be efficient, provide a good fit
with existing software, hide the details of lower layers, and allow simple
agents to implement subsets of the language.

• Networking. It should support all important aspects of modern networking
technology, and should be independent of transport mechanism.

• Environment. It must cope with heterogeneity and dynamism.

• Reliability. It must support reliable and secure agent communication.
After a review of the features of KQML, the authors describe how the fea-

tures of KQML support each of these requirements. The authors conclude by
describing various applications of KQML and by giving a comparison with two
related approaches: AOP and Telescript.

An Agent-Based Framework for Interoperability. Genesereth (1997) continues
the theme of agent communication with his chapter on the role of agents in en-
abling interoperability, meaning that software created by different developers
and at different times works together in seamless manner. He discusses two
limitations of current software interoperability technologies: 1. they lack the
ability to communicate definitions, theorems, and assumptions that may be
needed for one system to communicate effectively with another, and 2. there is
no general way of resolving inconsistencies in the use of syntax and vocabulary.

Like Finin and his colleagues, Genesereth has been a major contributor to

AN INTRODUCTION TO SOFTWARE AGENTS 29

the KSE. His ACL (agent communication language) draws on three corner-
stones of the KSE approach: vocabularies, (ontologies) KIF (Knowledge Inter-
change Format), and KQML. The vocabulary of ACL is represented as a sophis-
ticated open-ended dictionary of terms that can be referenced by the
cooperating agents and applications.27 KIF is a particular syntax for first order
predicate calculus that provides for a common internal knowledge representa-
tion, an “inner” language for agents (Genesereth and Fikes 1992). It was origi-
nally developed by Genesereth’s group and is currently being refined as part of
an ISO standardization effort. In the ACL approach, KQML is viewed as a lin-
guistic layer on top of KIF that allows information about the context (e.g.,
sender, receiver, time of message history) to be taken into account as part of
agent messages. In short, “an ACL message is a KQML expression in which the
‘arguments’ are terms or sentences in KIF formed from words in the ACL vo-
cabulary” (Genesereth and Ketchpel 1994).

The concept of a facilitator is central to ACL. Agents and facilitators are orga-
nized into a federated system, in which agents surrender their autonomy in exchange
for the facilitator’s services. Facilitators coordinate the activities of agents and pro-
vide other services such as locating other agents by name (white pages) or by capa-
bilities (yellow pages), direct communication, content-based routing, message
translation, problem decomposition, and monitoring. Upon startup, an agent initi-
ates an ACL connection to the local facilitator and provides a description of its ca-
pabilities. It then sends the facilitator requests when it cannot supply its own needs,
and is expected to act to the best of its ability to satisfy the facilitator’s requests.

Genesereth describes several examples of applications and summarizes issues
where further work is needed. ACL is an important step toward the ambitious
long-range vision where “any system (software or hardware) can interoperate with
any other system, without the intervention of human users or… programmers.”

Agents for Information Gathering. The chapter by Knoblock and Ambite
(1977) provides an in-depth example of the use of agents for an important
class of problems: information gathering. The SIMS architecture for intelli-
gent information agents is designed to provide:

1. modularity in terms of representing an information agent and information
sources,

2. extensibility in terms of adding new information agents and information
sources,

3. flexibility in terms of selecting the most appropriate information sources to
answer a query,

4. efficiency in terms of minimizing the overall execution time for a given
query, and

5. adaptability in terms of being able to track semantic discrepancies among
models of different agents.”

30 BRADSHAW

Each SIMS information agent provides expertise on a specific topic by draw-
ing upon other information agents and data repositories. “An existing database
or program can be turned into a simple information agent by building the ap-
propriate interface code, called a wrapper, that will allow it to conform to the
conventions of the [particular agent] organization… [Such an] approach greatly
simplifies the individual agents since they need to handle only one underlying
language. This arrangement makes it possible to scale the network into many
agents with access to many different types of information sources.” Agents that
answer queries but do not originate them are referred to as data repositories.

“Each SIMS agent contains a detailed model of its domain of expertise [(an
ontology)] and models of the information sources that are available to it. Given
an information request, an agent selects an appropriate set of information
sources, generates a plan to retrieve and process the data, uses knowledge about
information sources to reformulate the plan for efficiency, and executes the
plan.” KQML is used as the communication language in which messages are
transmitted among agents, while Loom (MacGregor 1990) is used as the content
language in which queries and responses are formulated.

A learning capability helps agents improve their overall efficiency and accu-
racy. Three modes of learning are used: caching data that is frequently retrieved
or which may be difficult to retrieve, learning about the contents of information
sources so as to minimize the cost of retrieval, and analyzing the contents of in-
formation sources so as to refine its domain model.

To date, the authors have built information agents that plan and learn in the
logistics planning domain. They are continuing to extend the planning and
learning capabilities of these agents.

KAoS: Toward an Industrial-Strength Open Agent Architecture. It is ironic
that as various sorts of agents are increasingly used to solve problems of soft-
ware interoperability, we are now faced with the problem of incompatible com-
peting agent frameworks:

“The current lack of standards and supporting infrastructure has prevented the
thing most users of agents in real-world applications most need: agent interoperabili-
ty (Gardner 1996; Virdhagriswaran, Osisek, and O’Connor 1995). A key characteris-
tic of agents is their ability to serve as universal mediators, tying together loosely-
coupled, heterogeneous components—the last thing anyone wants is an agent
architecture that can accommodate only a single native language and a limited set of
proprietary services to which it alone can provide access.”

The long-term objective of the KAoS (Knowledgeable Agent-oriented System)
agent architecture (Bradshaw et al. 1997) is to address two major limitations of
current agent technology: 1. failure to address infrastructure, scalability, and secu-
rity issues; and 2. problems with the semantics and lack of principled extensibility
of agent communication languages such as KQML. The first problem is ad-
dressed by taking advantage of the capabilities of commercial distributed object

AN INTRODUCTION TO SOFTWARE AGENTS 31

products (CORBA, DCOM, Java) as a foundation for agent functionality, and
supporting collaborative research and standards-based efforts to resolve agent in-
teroperability issues. The second problem is addressed by providing an open agent
communication meta-architecture in which any number of agent communication
languages with their accompanying semantics could be accommodated.

Each KAoS agent contains a generic agent instance, which implements as a min-
imum the basic infrastructure for agent communication. Specific extensions and
capabilities can be added to the basic structure and protocols through ordinary ob-
ject-oriented programming mechanisms. Unlike most agent communication ar-
chitectures, KAoS explicitly takes into account not only the individual message,
but also the various sequences of messages in which it may occur. Shared knowl-
edge about message sequencing conventions (conversation policies) enables agents
to coordinate frequently recurring interactions of a routine nature simply and pre-
dictably. Suites provide convenient groupings of conversation policies that support
a set of related services (e.g., the Matchmaker suite). A starter set of suites is provid-
ed in the architecture but can be extended or replaced as required.

The authors experience with KAoS leads them to be “optimistic about the
prospects for agent architectures built on open, extensible object frameworks
and [they] look forward to the wider availability of interoperable agent imple-
mentations that will surely result from continued collaboration.”

Communicative Actions for Artificial Agents. Cohen and Levesque’s (1997)
chapter identifies major issues in the design of languages for interagent commu-
nication, with specific application to KQML:

“[The] authors of KQML have yet to provide a precise semantics for this language,
as is customary with programming languages.28 Without one, agent designers can-
not be certain that the interpretation they are giving to a “performative” is in fact
the same as the one some other designer intended it to have. Moreover, the lack of
a semantics for communication acts leads to a number of confusions in the set of
reserved “performatives” supplied. Lastly, designers are left unconstrained and un-
guided in any attempt to extend the set of communication actions.”

In KQML, communicative actions are considered to belong to a specific class
of speech acts called “performatives” which, in natural language, are utterances
that succeed simply because speakers say or assert they are doing so (e.g., “I here-
by bequeath my inheritance to my daughter”). The authors identify three gener-
al difficulties with KQML. First, the definitions of the performatives suffer from
ambiguity and vagueness. Second, there are misidentified performatives, that should
instead be classes as directives (e.g., requests) or assertives (e.g., informs). Third,
there are missing performatives, such as the commissives (e.g., promises).

The authors respond to these difficulties with an outline an analysis of ratio-
nal action upon which their theory of speech acts rests. They then show how the
speech acts of requesting and informing can be defined in terms of the primi-
tives from this theory. The implications for future KQML design decisions are

32 BRADSHAW

twofold. First, if developers are allowed to extend the set of KQML performa-
tives, they must provide both correct implementations of the directive force of
new actions as well as assure that the new actions enter into old and new con-
versation patterns correctly. Second, if the communication primitives are to be
handled independently of the content of the message, developers must not allow
any attitude operators in the content (e.g., not permit an agent who says that it
requests an act to also say that it does not want the act done).

The authors provide a comparison with other agent communication lan-
guages including AOP, Telescript, and their own Open Agent Architecture
(OAA) approach (Cohen and Cheyer 1994). Additional work in joint intention
theory (Cohen 1994; Cohen and Levesque 1991; Smith and Cohen 1995) is re-
quired to clarify how communicative actions function in the initiation of team
behavior, and how they may be able to predict the structure of finite-state mod-
els of interagent conversations as used in agent architectures such as KAoS.29

Mobile Agents. Telescript is an object-oriented remote programming lan-
guage that is designed to address the problem of interoperability for network
services (White 1997). What PostScript did for cross-platform, device-
independent documents, Telescript aims to do for cross-platform, network-
independent messaging:

“In Telescript technology, mobile agents go to places, where they perform tasks on
behalf of a user. Agents and places are completely programmable, but they are
managed by security features such as permits, authorities, and access controls. Tele-
script technology is portable, allowing it to be deployed on any platform, over any
transport mechanism, and through assorted media—wireline and wireless. Tele-
script technology can also handle different content types, including text, graphics,
animations, live video, and sounds. Telescript technology turns a network into an
open platform.30 Simplified development, portability, and support for rich message
content make the technology applicable to a range of communicating applications,
from workflow automation to information services and from network manage-
ment to electronic markets” (General Magic 1994).

Telescript technology allows developers to bundle data and procedures into an
agent that will be sent over the network and executed remotely on the server.31

The Telescript agent carries its own agenda and may travel to several places in
succession in order to perform a task. Security for host systems is of paramount
concern. The Telescript runtime engine can be set to prevent agents from exam-
ining or modifying the memory, file system, or other resources of the computers
on which they execute. Moreover, each agent carries securely formatted and en-
crypted identification tickets that must be checked by the host before running
code. The ticket may also carry information about what kinds of tasks the agent
is permitted to perform, and the maximum resources it is allowed to expend.

White provides a motivation for mobile agent technology in terms of several
example applications. A comprehensive overview of Telescript technologies and
programming model and a brief discussion of related work round out the chapter.

AN INTRODUCTION TO SOFTWARE AGENTS 33

Parting Thoughts

Readers may legitimately complain about the idiosyncratic selection of chapters for
this book. Significant research topics and important bodies of work have certainly
been neglected32 although I hope that some of this may be rectified in a subsequent
volume. What I have tried to provide is convenient access to an initial collection of
exemplars illustrating the diversity of problems being addressed today by software
agent technology. Despite the fact that the solutions described here will ultimately
be replaced by better ones; regardless of whether the term “software agent” sur-
vives the next round of computing buzzword evolution, I believe that the kinds of
issues raised and lessons learned from our exploration of software agent technology
points the way toward the exciting developments of the next millennium.

Acknowledgments

Heartfelt thanks are due to Kathleen Bradshaw and to Ken Ford and Mike
Hamilton of AAAI Press, who nurtured this project from the beginning and pa-
tiently sustained it to a successful end. I am grateful to the authors of the individual
chapters for allowing their contributions to appear in this volume, and for many
stimulating discussions. Peter Clark, Jim Hoard, and Ian Angus provided helpful
feedback on an earlier draft of this chapter. Significant support for this effort was
provided by Boeing management including Cathy Kitto, Ken Neves, and Al Eris-
man; and by my colleagues in the agent research group: Bob Carpenter, Rob
Cranfill, Renia Jeffers, Luis Poblete, Tom Robinson, and Amy Sun. The writing of
this chapter was supported in part by grant R01 HS09407 from the Agency for
Health Care Policy and Research to the Fred Hutchison Cancer Research Center.

Notes

1. Works by authors such as Schelde (1993), who have chronicled the development of
popular notions about androids, humanoids, robots, and science fiction creatures, are a
useful starting point for software agent designers wanting to plumb the cultural context
of their creations. The chapter “Information beyond computers” in Lubar (1993) pro-
vides a useful grand tour of the subject. See Ford, Glymour, and Hayes (1995) for a de-
lightful collection of essays on android epistemology.

2. This is perhaps an overstatement, since researchers with strong roots in artificial life (a-
life) and robotics traditions have continued to make significant contributions to our un-
derstanding of autonomous agents (Maes 1993; Steels 1995). Although most researchers in
robotics have concerned themselves with agents embodied in hardware, some have also
made significant contributions in the area of software agents. See Etzioni (1993) for argu-
ments that software presents a no-less-attractive platform than hardware for the investi-
gation of complete agents in real-world environments. Williams and Nayak (1996) de-
scribe a software-hardware hybrid agent concept they call immobile robots (immobots).

3. For example, see the operational definition proposed by Shoham: “An agent is an enti-
ty whose state is viewed as consisting of mental components such as beliefs, capabilities,
choices, and commitments.”

34 BRADSHAW

4. With apologies to Oliver Goldsmith (Bartlett and Beck 1980, p. 369:9).

5. Alan Turing (Turing 1950) proposed what was perhaps the first attempt to operational-
ize a test for machine intelligence using the criterion of human ascription. Research on be-
lievable agents (Bates et al. 1994), lifelike computer characters (Ball 1996), and agent-based
computer games (Tackett and Benson 1985) carries on in the same tradition, aiming to
produce the most realistic multimedia experience of computer-based agents possible. As
discovered by organizers of the Loebner Prize Competitions (Epstein 1992) and the
AAAI Robot Competitions (Hinkle, Kortenkamp, and Miller 1996; Simmons 1995), one
significant challenge in objectively judging results of competitions based on pure ascrip-
tion and performance measures is that unless the evaluation criteria are well-thought out,
agents or robots relying on cheap programming tricks may consistently outperform those
who may be demonstrating some more legitimate kind of machine intelligence.

6. Russell and Norvig (1995, p. 821) discuss the fact that while ascribing beliefs, desires, and
intentions to agents (the concept of an intentional stance) might help us avoid the paradoxes
and clashes of intuition, the fact that it is rooted in a relativistic folk psychology can create
other sorts of problems. Resnick and Martin (Martin 1988; Resnick and Martin 1990) de-
scribe examples of how, in real life, people quite easily and naturally shift between the dif-
ferent kinds of descriptions of designed artifacts (see footnote 11). Erickson (1997), Laurel
(1997), and Shneiderman (1997) offer additional perspectives on the consequences of en-
couraging users to think in terms of agents.

7. Milewski and Lewis (1994) review the organizational psychology and management
science literature regarding delegation. They draw implications for agent design, includ-
ing delegation cost-benefit tradeoffs, kinds of communication required, determinants of
trust, performance controls, and differences in personality and culture.

8. “The difference between an automaton and an agent is a somewhat like the differ-
ence between a dog and a butler. If you send your dog to buy a copy of the New York
Times every morning, it will come back with its mouth empty if the news stand happens
to have run out one day. In contrast, the butler will probably take the initiative to buy
you a copy of the Washington Post, since he knows that sometimes you read it instead”
(Le Du 1994), my translation.

9. Newquist (1994) gives a similarly-flavored critique of the overhyping of “intelligence”
in various products.

10. Shoham goes on to cite the following statement by John McCarthy, who distinguishes
between the “legitimacy” of describing mental qualities to machines and its “usefulness”
“To ascribe certain beliefs, free will, intentions, consciousness, abilities or wants to a machine
or computer program is legitimate when such an ascription expresses the same informa-
tion about the machine that it expresses about a person. It is useful when the ascription
helps us understand the structure of the machine, its past or future behavior, or how to
repair or improve it. It is perhaps never logically required even for humans, but express-
ing reasonably briefly what is actually known about the state of the machine in a particu-
lar situation may require mental qualities or qualities isomorphic to them. Theories of
belief, knowledge and wanting can be constructed for machines in a simpler setting than
for humans, and later applied to humans. Ascription of mental qualities is most straight-
forward for machines of known structure such as thermostats and computer operating
systems, but is most useful when applied to entities whose structure is very incompletely
known” (McCarthy 1979).

11. Of course, in real life, people quite easily and naturally shift between the different
kinds of descriptions. For example, Resnick and Martin report the following about their
research with children building LEGO robots: “As students play with artificial creatures,

AN INTRODUCTION TO SOFTWARE AGENTS 35

we are particularly interested in how the students think about the creatures. Do they
think of the LEGO creatures as machines, or as animals? In fact, we have found that stu-
dents (and adults) regard the creatures in many different ways. Sometimes students view
their creatures on a mechanistic level, examining how one LEGO piece makes another
move. At other times, they might shift to the information level, exploring how informa-
tion flows from one electronic brick to another. At still other times, students view the
creatures on a psychological level, attributing intentionality or personality to the creatures.
One creature ‘wants’ to get to the light. Another creature ‘likes’ the dark. A third is
‘scared’ of loud noises.

Sometimes, students will shift rapidly between levels of description. Consider, for ex-
ample, the comments of Sara, a fifth-grader (Martin 1988). Sara was considering whether
her creature would sound a signal when its touch sensor was pushed:

‘It depends on whether the machine wants to tell… if we want the machine to tell
us… if we tell the machine to tell us.’

Within a span of ten seconds, Sara described the situation in three different ways.
First she viewed the machine on a psychological level, focusing on what the machine
‘wants.’ Then she shifted intentionality to the programmer, and viewed the programmer
on a psychological level. Finally, she shifted to a mechanistic explanation, in which the
programmer explicitly told the machine what to do.

Which is the correct level? That is a natural, but misleading question. Complex sys-
tems can be meaningfully described at many different levels. Which level is ‘best’ de-
pends on the context: on what you already understand and on what you hope to learn. In
certain situations, for certain questions, the mechanistic level is the best. In other situa-
tions, for other questions, the psychological level is best. By playing with artificial crea-
tures, students can learn to shift between levels, learning which levels are best for which
situations.” (Resnick and Martin 1990).

12. Ideally, this would include some notion of episodic memory. Unfortunately, only two
major examples of “agents” incorporating episodic memory in the literature easily come
to mind: Winograd’s (1973) SHRDLU and Vere and Bickmore’s (1990) “basic agent.”
For a thought-provoking look into the consequences of a future where a personal
“agent” might become the ultimate cradle-to-grave companion, experiencing and re-
membering every event of a lifetime, see “The Teddy” chapter in Norman (1992).

13. In his widely cited article “Eye on the Prize” (Nilsson 1995), Nilsson discusses the
shift of emphasis in AI from inventing general problem-solving techniques to what he
calls performance programs, and gives his reasons for believing that there will soon be a
reinvigoration of efforts to build programs of “general, humanlike competence.”

14. While macro and scripting languages are technically adequate to solve this problem, it
seems unlikely that the majority of “end users” will ever want to endure what it takes to
become proficient with them: “In the past two decades there have been numerous attempts
to develop a language for end users: Basic, Logo, Smalltalk, Pascal, Playground, Hyper-
Talk, Boxer, etc. All have made progress in expanding the number of people who can pro-
gram. Yet as a percentage of computer users, this number is still abysmally small. Consider
children trying to learn programming… We hypothesize that fewer than 10% of there
children who are taught programming continue to program after the class ends… Eliot
Soloway states, ‘My guess is that the number… is less than 1%! Who in their right mind
would use those languages—any of them—after a class?’” (Smith, Cypher, and Spohrer
1997). While the software agent perspective does not obviate the need for end-user pro-
gramming, I believe it has potential as one means of simplifying some of the conceptual
barriers that users and developers face in designing and understanding complex systems.

36 BRADSHAW

15. Fortunately, people have a lot of experience in judging the limitations of those with
whom they communicate: “Sometimes people overstate what the computer can do, but
what people are extremely good at is figuring out what they can get away with. Children
can size up a substitute teacher in about five minutes” (Kahle 1993). For evidence that
developers of intelligent software are no less prone than other people to overestimate the
capabilities of their programs, see McDermott (1976).

16. Automatic programming is an enterprise with a long history of insatiable requirements
and moving expectations. For example, Rich and Waters (1988) remind us that “compared
to programming in machine code, assemblers represented a spectacular level of automa-
tion. Moreover, FORTRAN was arguably a greater step forward than anything that has hap-
pened since. In particular, it dramatically increased the number of scientific end users who
could operate computers without having to hire a programmer.” Today, no one would call
FORTRAN a form of automatic programming, though in 1958 the term was quite appropri-
ate. The intractability of fully-automated, completely-general programming is analogous
to the problem of automated knowledge acquisition (Bradshaw et al. 1993a; Ford et al.
1993). As Sowa observes: “Fully automated knowledge acquisition is as difficult as unre-
stricted natural language understanding. The two problems, in fact, are different aspects of
exactly the same problem: the task of building a formal model for some real world system
on the basis of informal descriptions in ordinary language. Alan Perlis once made a remark
that characterizes that difficulty: You can’t translate informal specifications into formal
specifications by any formal algorithm.” (Sowa 1989).

17. Van de Velde (1995) provides a useful discussion of the three coupling mechanisms
which can enable coordination between multiple agents: knowledge-level, symbol-level,
and structural. Symbol-level coupling occurs when agents coordinate by exchange of
symbol structures (e.g., “messages”) and knowledge-level coupling occurs when an agent
“rationalizes the behavior of multiple agents by ascribing goals and knowledge to them
that, assuming their rational behavior, explains their behavior” (i.e., through taking an
intentional stance). Structural coupling, as discussed extensively by Maturana and Varela
(1992), occurs when two agents “coordinate without exchange of representation,… by
being mutually adapted to the influences that they experience through their common en-
vironment… For example, a sidewalk… plays a coordinating role in the behavior of
pedestrians and drivers… [and] the coordination of [soccer] players (within and across
teams) is mediated primarily by… the ball.” Similarly, as Clancey (1993) argues, the use-
fulness of the blackboard metaphor is that it provides an external representation that
regulates the coordination between multiple agents.

18. These latter issues are discussed in more detail in a Laurel’s (1991) book Computers as
Theatre.

19. It is also easy for people to assume less tangible qualities about agents like that they
are internally consistent, are rational, act in good faith, can introspect, can cooperate to
achieve common goals, and have a persistent mental state.

20. A more blunt criticism of agents is voiced by Jaron Lanier (1996), who writes, “The
idea of ‘intelligent agents’ is both wrong and evil. I also believe that this is an issues of
real consequence to the near-term future of culture and society. As the infobahn rears its
gargantuan head, the agent question looms as a deciding factor in whether this new beast
will be much better than TV, or much worse.” See also his extended online debate with
Pattie Maes in Lanier and Maes (1996).

21. Several commercial products have subsequently incorporated Ovallike capability,
though with less generality and sophistication. These include cooperative work tools and
databases for semi-structured information such as Lotus Notes (Greif 1994) and Caere

AN INTRODUCTION TO SOFTWARE AGENTS 37

Pagekeeper, as well as mail readers with rule-based message sorting. Workflow manage-
ment tools with some of these capabilities have also appeared.

22. For other approaches to defining agents for scheduling and calendar management
tasks, see Kautz et al. (1993); Mitchell et al. (1994).

23. Maes has formed Firefly Network, Inc. in order to extend the technology developed
in Ringo to the Web. Her firefly service uses knowledge about people with similar tastes
and interests in music and movies as a means of personalizing its recommendations.

24. A sort of Java for kids.

25. For a similar approach that relies on graphical rewrite rules, see Repenning’s (1995)
Agentsheets.

26. This is of course a caricature of both approaches: Shoham does not ignore the impor-
tance of agent communication in AOP; neither would most agent communication re-
searchers argue that some representation of “mental state” is unnecessary. Davies’ (1994)
Agent-K language is an attempt to build a hybrid that extends AGENT-0 to use KQML

for communication.

27. One well-known tool that has been used to construct such vocabularies is Ontolingua
(Gruber 1992a, 1992b).

28. Recent efforts to provide a semantic foundation for KQML are described in Labrou
(1996) and Labrou and Finin (1994). Another more general approach to agent language se-
mantics is currently under development by Smith and Cohen (1995).

29. Such a strategy parallels the approach of Rosenschein, who designed a compiler that
generates finite state machines whose internal states can be proved to correspond to cer-
tain logical propositions about the environment (Kaelbling and Rosenschein 1990;
Rosenschein 1995).

30. General Magic is working hard to assure that Telescript can take maximum advan-
tage of developments in Internet technology. Its Tabriz AgentWare and Agent Tools
products (General Magic 1996) integrate Telescript and Web technologies, and White
has proposed a common agent platform intended to enable interoperability between
Telescript and other mobile agent technology (White 1996).

31. With respect to the relationship between Telescript, Tabriz, and Java, General Magic
writes: “It is important to note that Telescript and Java are complementary, interoperable
languages. Telescript agents can set parameters for Java applets and Java applets can call
Telescript operations on the server. This interoperability allows developers to create solu-
tions that leverage the power of the two environments: Java can be used to create and
manage compelling user experiences, while Tabriz can manage transactions, instruc-
tions, events, and processes” (General Magic 1996).

32. Much more, for example, could have been included about the veritable explosion of
work on agents and the Internet (Bowman et al. 1994; Cheong 1996; Etzioni and Weld
1995; Weld, Marks, and Bobrow 1995). None of the many applications of agent technolo-
gy in complex application areas ranging from digital libraries (Paepcke et al. 1996;
Wiederhold 1995) to systems management (Benech, Desprats, and Moreau 1996; Rivière,
Pell, and Sibilla 1996) to manufacturing (Balasubramanian and Norrie 1995) could be in-
cluded. We have slighted the whole fields of artificial life (Langton 1995) situated au-
tomata (Brooks 1990; Kaelbling and Rosenschein 1991), learning and adaptation (Gaines
1996; Maes 1995; Sen et al. 1996), and large portions of the voluminous literature on DAI
and other fields where important related work is taking place.

38 BRADSHAW

References

Apple. 1993. AppleScript Language Guide. Reading, Mass.: Addison-Wesley.

Arens, Y.; Feiner, S.; Foley, J.; Hovy, E.; John, B.; Neches, R.; Pausch, R.; Schorr, H.; and
Swartout, W. 1991. Intelligent User Interfaces, Report ISI/RR-91-288, USC/Information
Sciences Institute, Marina del Rey, California.

Balasubramanian, S., and Norrie, D. H. 1995. A Multi-Agent Intelligent Design System
Integrating Manufacturing and Shop-Floor Control. In Proceedings of the First Interna-
tional Conference on Multi-Agent Systems (ICMAS-95), ed. V. Lesser, 3–9. Menlo Park,
Calif.: AAAI Press.

Ball, G. 1996. Lifelike Computer Characters (LCC-96) Schedule and Workshop Infor-
mation. http://www.research.microsoft.com/lcc.htm.

Ball, G.; Ling, D.; Kurlander, D.; Miller, J.; Pugh, D.; Skelly, T.; Stankosky, A.; Thiel,
D.; Dantzich, M. V; and Wax, T. 1996. Lifelike Computer Characters: The Persona Pro-
ject at Microsoft Research. In Software Agents, ed J. M. Bradshaw. Menlo Park, Calif.:
AAAI Press.

Barrett, E. 1992. Sociomedia: An Introduction. In Sociomedia: Multimedia, Hypermedia, and
the Social Construction of Knowledge, ed. E. Barrett, 1–10. Cambridge, Mass.: MIT Press.

Bartlett, J., and Beck, E. M., eds. 1980. Familiar Quotations. Boston, Mass.: Little, Brown.

Bates, J. 1994. The Role of Emotion in Believable Agents. Communications of the ACM
37(7): 122–125.

Bates, J., Hayes-Roth, B., Laurel, B., & Nilsson, N. 1994. Papers presented at the AAAI
Spring Symposium on Believable Agents, Stanford University, Stanford, Calif.

Benech, D.; Desprats, T.; and Moreau, J.-J. 1996. A Conceptual Approach to the Integra-
tion of Agent Technology in System Management. In Distributed Systems: Operations and
Management (DSOM-96).

Bowman, C. M.; Danzig, P. B.; Manber, U.; and Schwartz, M. F. 1994. Scalable Internet
Resource Discovery: Research Problems and Approaches. Communications of the ACM
37(8): 98–107, 114.

Boy, G. 1992. Computer-Integrated Documentation. In Sociomedia: Multimedia, Hyper-
media, and the Social Construction of Knowledge, ed. E. Barrett, 507–531. Cambridge,
Mass.: MIT Press.

Boy, G. A. 1991. Intelligent Assistant Systems. San Diego, Calif.: Academic Press.

Boy, G. A. 1997. Software Agents for Cooperative Learning. In Software Agents, ed J. M.
Bradshaw. Menlo Park, Calif.: AAAI Press.

Boy, G. A., and Mathé, N. 1993. Operator Assistant Systems: An Experimental Ap-
proach Using a Telerobotics Application. In Knowledge Acquisition as Modeling, eds. K.
M. Ford and J. M. Bradshaw, 271–286. New York: Wiley.

Bradshaw, J. M., and Boose, J. H. 1992. Mediating Representations for Knowledge Ac-
quisition, Boeing Computer Services, Seattle, Washington.

Bradshaw, J. M., and Boy, G. A. 1993. Adaptive Documents, Internal Technical Report,
EURISCO.

Bradshaw, J. M., Dutfield, S., Benoit, P., & Woolley, J. D. 1997. KAoS: Toward an indus-
trial-strength generic agent architecture. In Software Agents, ed J. M. Bradshaw. Menlo
Park, Calif.: AAAI Press.

Bradshaw, J. M.; Ford, K. M.; Adams-Webber, J. R.; and Boose, J. H. 1993. Beyond the

AN INTRODUCTION TO SOFTWARE AGENTS 39

Repertory Grid: New Approaches to Constructivist Knowledge-Acquisition Tool Devel-
opment. In Knowledge Acquisition as Modeling, eds. K. M. Ford and J. M. Bradshaw,
287–333. New York: Wiley.

Bradshaw, J. M.; Richards, T.; Fairweather, P.; Buchanan, C.; Guay, R.; Madigan, D.;
and Boy, G. A. 1993. New Directions for Computer-Based Training and Performance
Support in Aerospace. Paper presented at the Fourth International Conference on
Human-Machine Interaction and Artificial Intelligence in Aerospace, 28–30 September,
Toulouse, France.

Brodie, M. L. 1989. Future Intelligent Information Systems: AI and Database Technolo-
gies Working Together. In Readings in Artificial Intelligence and Databases, eds. J. My-
lopoulos and M. L. Brodie, 623–642. San Francisco, Calif.: Morgan Kaufmann.

Brooks, R. A. 1990. Elephants Don’t Play Chess. Robotics and Autonomous Systems 6.

Brown, J. S., and Duguid, P. 1996. The Social Life of Documents. First Monday
(http://www.firstmonday.dk).

Browne, D.; Totterdell, P.; and Norman, M., eds. 1990. Adaptive User Interfaces. San
Diego, Calif.: Academic.

Canto, C., and Faliu, O. (n.d.). The History of the Future: Images of the 21st Century. Paris:
Flammarion.

Chang, D. T., and Lange, D. B. 1996. Mobile Agents: A New Paradigm for Distributed
Object Computing on the WWW. In Proceedings of the OOPSLA 96 Workshop “To-
ward the Integration of WWW and Distributed Object Technology.”

Cheong, F.-C. 1996. Internet Agents: Spiders, Wanderers, Brokers, and Bots. Indianapolis,
Ind.: New Riders.

Clancey, W. J. 1993. The Knowledge Level Reinterpreted: Modeling Socio-Technical
Systems. In Knowledge Acquisition as Modeling, eds. K. M. Ford and J. M. Bradshaw,
33–50. New York: Wiley.

Cohen, P. R. 1994. Models of Dialogue. In Cognitive Processing for Vision and Voice:
Proceedings of the Fourth NEC Research Symposium, ed. T. Ishiguro, 181–203.
Philadelphia, Pa.: Society for Industrial and Applied Mathematics.

Cohen, P. R., and Cheyer, A. 1994. An Open Agent Architecture. Paper presented at the
AAAI Spring Symposium on Software Agents, 21–23 March, Stanford, California.

Cohen, P. R.; and Levesque, H. 1997. Communicative Actions for Artificial Agents. In Soft-
ware Agents, ed J. M. Bradshaw. Menlo Park, Calif.: AAAI Press.

Cohen, P. R., and Levesque, H. J. 1991. Teamwork, Technote 504, SRI International,
Menlo Park, California.

Coutaz, J. 1990. Interfaces Homme Ordinateur: Conception et Réalisation. Paris: Editions
Bordas.

Davies, W. H. E. 1994. AGENT-K: An Integration of AOP and KQML. In Proceedings of
the CIKM-94 Workshop on Intelligent Agents, eds. T. Finin and Y. Labrou.
http://www.csd.abdn.ac.uk/~pedwards/publs/agentk.html.

Dennett, D. C. 1987. The Intentional Stance. Cambridge, Mass.: MIT Press.

diSessa, A. A. 1986. Notes on the Future of Programming: Breaking the Utility Barrier.
In User-Centered System Design, eds. D. A. Norman and S. W. Draper. Hillsdale, N.J.:
Lawrence Erlbaum.

Epstein, R. 1992. The Quest for the Thinking Computer. AI Magazine 13(2): 81–95.

40 BRADSHAW

Erickson, T. 1996. Designing Agents as If People Mattered. In Software Agents, ed J. M.
Bradshaw. Menlo Park, Calif.: AAAI Press.

Etzioni, O. 1993. Intelligence without robotics. AI Magazine(Winter), 7-14.

Etzioni, O., & Weld, D. S. 1995. Intelligent agents on the Internet: Fact, fiction, and fore-
cast. IEEE Expert, 10(4), 44-49.

Finin, T., Labrou, Y., & Mayfield, J. 1997. KQML as an agent communication language.
In Software Agents, ed. J. M. Bradshaw. Menlo Park, Calif.: AAAI Press.

Etzioni, O. 1993. Intelligence without Robots: A Reply to Brooks. AI Magazine 14(4):
7–13.

Etzioni, O., and Weld, D. S. 1995. Intelligent Agents on the Internet: Fact, Fiction, and
Forecast. IEEE Expert 10(4): 44–49.

Foner, L. 1993. What’s an Agent, Anyway? A Sociological Case Study, Agents Memo, 93-01,
Media Lab, Massachusetts Institute of Technology.

Ford, K. M.; Glymour, C.; and Hayes, P. J., eds. 1995. Android Epistemology. Menlo Park,
Calif.: AAAI Press.

Ford, K. M.; Bradshaw, J. M.; Adams-Webber, J. R.; and Agnew, N. M. 1993. Knowl-
edge Acquisition as a Constructive Modeling Activity. In Knowledge Acquisition as Mod-
eling, eds. K. M. Ford and J. M. Bradshaw, 9–32. New York: Wiley.

Franklin, S., and Graesser, A. 1996. Is It an Agent or Just a Program? A Taxonomy for
Autonomous Agents. In Proceedings of the Third International Workshop on Agent Theo-
ries, Architectures, and Languages. New York: Springer-Verlag.

Gaines, B. R. 1997. The Emergence of Knowledge through Modeling and Management Processes in
Societies of Adaptive Agents, Knowledge Science Institute, University of Calgary. Forthcoming.

Gardner, E. 1996. Standards Hold Key to Unleashing Agents. Web Week 5, 29 April.

General Magic. 1996. Tabriz White Paper: Transforming Passive Networks into an Ac-
tive, Persistent, and Secure Business Advantage, White Paper
(http://www.genmagic.com/Tabriz/Whitepapers/tabrizwp.html), General Magic, Moun-
tain View, California.

General Magic. 1994. Telescript Technologies at Heart of Next-Generation Electronic
Services, News Release, 6 January, General Magic, Mountain View, California.

Genesereth, M. R. 1997. An Agent-based Framework for Interoperability. In Software
Agents, ed. J. M. Bradshaw. Menlo Park, Calif.: AAAI Press.

Genesereth, M. R., and Fikes, R. 1992. Knowledge Interchange Format Version 3.0 Ref-
erence Manual, Logic Group Report, Logic-92-1, Department of Computer Science,
Stanford University.

Genesereth, M. R., and Ketchpel, S. P. 1994. Software Agents. Communications of the
ACM 37(7): 48–53, 147.

Gilbert, D.; Aparicio, M.; Atkinson, B.; Brady, S.; Ciccarino, J.; Grosof, B.; O’Connor, P.;
Osisek, D.; Pritko, S.; Spagna, R.; and Wilson, L. 1995. IBM Intelligent Agent Strategy,
IBM Corporation.

Glicksman, J.; Weber, J. C.; and Gruber, T. R. 1992. The NOTE MAIL Project for Com-
puter-Supported Cooperative Mechanical Design. Paper presented at the AAAI-92
Workshop on Design Rationale Capture and Use, San Jose, California, July.

Greif, I. 1994. Desktop Agents in Group-Enabled Products. Communications of the ACM
37(7): 100–105.

AN INTRODUCTION TO SOFTWARE AGENTS 41

Gruber, T. R. 1992a. ONTOLINGUA: A Mechanism to Support Portable Ontologies, Version
3.0, Technical Report, KSL 91-66, Knowledge Systems Laboratory, Department of
Computer Science, Stanford University.

Gruber, T. R. 1992b. A Translation Approach to Portable Ontology Specifications. Paper
presented at the Seventh Knowledge Acquisition for Knowledge-Based Systems Work-
shop, Banff, Alberta, Canada.

Gruber, T. R.; Tenenbaum, J. M.; and Weber, J. C. 1992. Toward a Knowledge Medium
for Collaborative Product Development. In Proceedings of the Second International
Conference on Artificial Intelligence in Design, ed. J. S. Gero.

Harrison, C. G.; Chess, D. M.; and Kershenbaum, A. 1995. Mobile Agents: Are They a
Good Idea? IBM T. J. Watson Research Center.

Hayes-Roth, B.; Brownston, L.; and Gent, R. V. 1995. Multiagent Collaboration in Di-
rected Improvisation. In Proceedings of the First International Conference on Multi-Agent
Systems (ICMAS-95), ed. V. Lesser, 148–154. Menlo Park, Calif.: AAAI Press.

Hinkle, D.; Kortenkamp, D.; and Miller, D. 1996. The 1995 Robot Competition and Ex-
hibition. AI Magazine 17(1): 31–45.

Hutchins, E. L.; Hollan, J. D.; and Norman, D. A. 1986. Direct Manipulation Interfaces.
In User-Centered System Design, eds. D. A. Norman and S. W. Draper, 87–124. Hillsdale,
N.J.: Lawrence Erlbaum.

Johnson, P.; Feiner, S.; Marks, J.; Maybury, M.; and Moore, J., eds. 1994. Paper presented
at the AAAI Spring Symposium on Intelligent Multi-Media Multi-Modal Systems, Stan-
ford, California.

Kaehler, T., and Patterson, D. 1986. A Small Taste of SMALLTALK. BYTE, August,
145–159.

Kaelbling, L. P., and Rosenschein, S. J. 1991. Action and Planning in Embedded Agents.
In Designing Autonomous Agents, eds. P. Maes , 35–48. Cambridge, Mass.: MIT Press.

Kaelbling, L. P., and Rosenschein, S. J. 1990. Action and Planning in Embedded Agents.
Robotics and Autonomous Systems 6(1–2): 35–48.

Kahle, B. 1993. Interview of Brewster Kahle. Intertek 4:15–17.

Kautz, H.; Selman, B.; Coen, M.; Ketchpel, S.; and Ramming, C. 1994. An Experiment
in the Design of Software Agents. In Proceedings of the Twelfth National Conference
on Artificial Intelligence (AAAI-94), 438–443. Menlo Park, Calif.: American Association
for Artificial Intelligence.

Kay, A. 1990. User Interface: A Personal View. In The Art of Human-Computer Interface
Design, ed. B. Laurel, 191–208. Reading, Mass.: Addison-Wesley.

Kay, A. 1984. Computer Software. Scientific American 251(3): 53–59.

Knoblock, C. A., & Ambite, J.-L. 1996. Agents for Information Gathering. In Software
Agents, ed. J. M. Bradshaw. Menlo Park, Calif.: AAAI Press.

Labrou, Y. 1996. Semantics for an Agent Communication Language. Ph.D. diss., Dept.
of Computer Science, University of Maryland at Baltimore County.

Labrou, Y., and Finin, T. 1994. A Semantics Approach for KQML—A General-Purpose
Communication Language for Software Agents. In Proceedings of the Third Interna-
tional Conference on Information and Knowledge Management, eds. N. R. Adam, B. K.
Bhargava, and Y. Yesha, 447–455. New York: Association of Computing Machinery.

Lai, K.-Y., and Malone, T. W. 1992. Oval Version 1.1 User’s Guide, Center for Coordina-
tion Science, Massachusetts Institute of Technology.

42 BRADSHAW

Lange, D. B. 1996. Agent Transfer Protocol ATP/0.1 Draft 4, Tokyo Research Laborato-
ry, IBM Research.

Langton, C. G., ed. 1995. Artificial Life: An Overview. Cambridge, Mass.: MIT Press.

Lanier, J. 1996. Agents of Alienation. http://www.voyagerco.com/misc/jaron.html.

Lanier, J., and Maes, P. 1996. Intelligent Humans = Stupid Humans? Hot Wired, 15–24
July. http://www.hotwired.com/braintennis/96/29/index0a.html.

Laurel, B. 1991. Computers as Theatre. Reading, Mass.: Addison-Wesley.

Laurel, B. 1997. Interface agents: Metaphors with Character. In Software Agents, ed J. M.
Bradshaw. Menlo Park, Calif.: AAAI Press.

Le Du, B. 1994. Issue 1309, 13 mai. Les Agents, des Assistants dotés d’Intelligence. 01 In-
formatique, p. 13.

Lethbridge, T. C., and Skuce, D. 1992. Beyond Hypertext: Knowledge Management for
Technical Documentation. Submitted to SIGDOC ‘92. Ottawa, Ontario, Canada.

Lewis, J. 1996. NETSCAPE Gets Serious about Infrastructure. The Burton Group.

Lubar, S. 1993. InfoCulture: The Smithsonian Book of Information and Inventions. Boston,
Mass.: Houghton Mifflin.

McCarthy, J. M. 1979. Ascribing Mental Qualities to Machines, Technical Report, Memo
326, AI Lab, Stanford University.

McDermott, D. 1976. Artificial Intelligence Meets Natural Stupidity. SIGART Newslet-
ter 57:4–9.

MacGregor, R. 1990. The Evolving Technology of Classification-Based Knowledge Rep-
resentation Systems. In Principles of Semantic Networks: Explorations in the Representation
of Knowledge, ed. J. F. Sowa, 385–400. San Francisco, Calif.: Morgan Kaufmann.

Maes, P. 1997. Agents that Reduce Work and Information Overload. In Software Agents,
ed. J. M. Bradshaw. Menlo Park, Calif.: AAAI Press.

Maes, P. 1995. Modeling Adaptive Autonomous Agents. In Artificial Life: An Overview,
ed. C. G. Langton, 135–162. Cambridge, Mass.: MIT Press.

Maes, P., ed. 1993. Designing Autonomous Agents. Cambridge, Mass.: MIT Press.

Maes, P., and Kozierok, R. 1993. Learning Interface Agents. In Proceedings of the
Eleventh National Conference on Artificial Intelligence (AAAI-93), 459–465. Menlo
Park, Calif.: American Association for Artificial Intelligence.

Malone, T. W.; Grant, K. R.; and Lai, K.-Y. 1996. Agents for Information Sharing and
Coordination: A History and Some Reflections. In Software Agents, ed. J. M. Bradshaw.
Menlo Park, Calif.: AAAI Press.

Martin, F. 1988. Children, Cybernetics, and Programmable Turtles. Masters Thesis, Media
Laboratory, Massachusetts Institute of Technology.

Mathé, N., and Chen, J. 1994. A User-Centered Approach to Adaptive Hypertext Based
on an Information Relevance Model. Paper presented at the Fourth International Con-
ference on User Modeling (UM ‘94), Hyannis, Massachusetts.

Maturana, H. R., and Varela, F. J. 1992. The Tree of Knowledge: The Biological Roots of
Human Understanding (rev. ed.). Boston: Shambala.

Mellor, P. 1994. CAD: Computer-Aided Disaster. SOFSEM 94.

Milewski, A. E., and Lewis, S. M. 1994. Design of Intelligent Agent User Interfaces:
Delegation Issues. Technical Report, Oct. 20. AT&T Information Technologies Services.

AN INTRODUCTION TO SOFTWARE AGENTS 43

Miller, J. R., and Neches, R. 1987. Tutorial on Intelligent Interfaces Presented at the
Sixth National Conference on Artificial Intelligence, 14–16 July, Seattle, Washington.

Minsky, M. 1986. The Society of Mind. New York: Simon & Schuster.

Minsky, M., and Riecken, D. 1994. A Conversation with Marvin Minsky about Agents.
Communications of the ACM 37(7): 23–29.

Mitchell, T.; Caruana, R.; Freitag, D.; McDermott, J.; and Zabowski, D. 1994. Experi-
ence with a Learning Personal Assistant. Communications of the ACM 37(7): 81–91.

Moulin, B., and Chaib-draa, B. 1996. An Overview of Distributed Artificial Intelligence.
In Foundations of Distributed Artificial Intelligence, eds. G. M. P. O’Hare and N. R. Jen-
nings, 3–55. New York: Wiley.

Neal, J. G., and Shapiro, S. C. 1994. Knowledge-Based Multimedia Systems. In Multime-
dia System, ed. J. F. K. Buford, 403–438. Reading, Mass.: Addison-Wesley.

Neches, R.; Fikes, R.; Finin, T.; Gruber, T.; Patil, R.; Senator, T.; and Swartout, W. R.
1991. Enabling Technology for Knowledge Sharing. AI Magazine 12(3): 36–55.

Negroponte, N. 1997. Agents: From Direct Manipulation to Delegation. In Software
Agents, ed. J. M. Bradshaw. Menlo Park, Calif.: AAAI Press.

Negroponte, N. 1995. Being Digital. New York: Alfred Knopf.

Negroponte, N. 1970. The Architecture Machine: Towards a More Human Environment.
Cambridge, Mass.: MIT Press.

Newell, A. 1982. The Knowledge Level. Artificial Intelligence 18:87–127.

Newquist, H. P. 1994. Intelligence on Demand—Suckers. AI Expert, December, 42–43.

Nilsson, N. J. 1995. Eye on the Prize. AI Magazine 16(2): 9–17.

Norman, D. A. 1997. How Might People Interact with Agents? In Software Agents, ed J.
M. Bradshaw. Menlo Park, Calif.: AAAI Press.

Norman, D. A. 1992. Turn Signals Are the Facial Expressions of Automobiles. Reading,
Mass.: Addison-Wesley.

Nwana, H. S. 1996. Software Agents: An Overview. Knowledge Engineering Review,
11(3): 205-244.

Paepcke, A.; Cousins, S. B.; Garcia-Molina, H.; Hassan, S. W.; Ketchpel, S. P.;
Röscheisen, M.; and Winograd, T. 1996. Using Distributed Objects for Digital Library
Interoperability. IEEE Computer, May, 61–68.

Perrow, C. 1984. Normal Accidents: Living with High-Risk Technologies. New York: Basic.

Petrie, C. J. 1996. Agent-Based Engineering, the Web, and Intelligence. IEEE Expert,
11(6): 24-29.

Repenning, A. 1995. Bending the Rules: Steps toward Semantically Enriched Graphical
Rewrite Rules. Paper presented at Visual Languages, Darmstadt, Germany.

Resnick, M., and Martin, F. 1990. Children and Artificial Life, E&L Memo, 10, Media
Laboratory, Massachusetts Institute of Technology.

Rich, C., and Waters, R. C. 1988. Automatic Programming: Myths and Prospects. IEEE
Computer 21(8): 40–51.

Riecken, D. 1997. The M System. In Software Agents, ed. J. M. Bradshaw. Menlo Park,
Calif.: AAAI Press.

Rivière, A.-I.; Pell, A.; and Sibilla, M. 1996. Network Management Information: Integration
Solution for Models Interoperability, Technical Report, Hewlett-Packard Laboratories.

44 BRADSHAW

Rosenschein, S. J. 1985. Formal Theories of Knowledge in AI and Robotics. New Gener-
ation Computing 3(4): 345–357.

Russell, S., and Norvig, P. 1995. Artificial Intelligence: A Modern Approach. New York:
Prentice-Hall.

Ryan, B. 1991. DYNABOOK Revisited with Alan Kay. BYTE, February, 203–208.

Schank, R. C., and Jona, H. Y. 1991. Empowering the Student: New Perspectives on the
Design of Teaching Systems. The Journal of the Learning Sciences 1(1).

Schelde, P. 1993. Androids, Humanoids, and Other Science Fiction Monsters. New York:
New York University Press.

Sen, S.; Hogg, T.; Rosenschein, J.; Grefenstette, J.; Huhns, M.; and Subramanian, D., eds.
1996. Adaptation, Coevolution, and Learning in Multiagent Systems: Papers from the
1996 AAAI Symposium. Technical Report SS-96-01. Menlo Park, Calif.: AAAI Press.

Sharp, M. 1993. Reactive Agents, Technical Report, Apple Computer, Cupertino, Calif.

Sharp, M. 1992. Principles for Situated Actions in Designing Virtual Realities. Master’s
thesis, Department of Computer Science, University of Calgary.

Shaw, M. 1996. Some Patterns for Software Architectures. In Pattern Languages of Pro-
gram Design, eds. J. O. Coplien and D. C. Schmidt, 453–462. Reading, Mass.: Addison-
Wesley.

Shneiderman, B. 1997. Direct manipulation vs. agents: Paths to predictable, controllable,
and comprehensible interfaces. In Software Agents, ed J. M. Bradshaw. Menlo Park,
Calif.: AAAI Press.

Shneiderman, B. 1987. Designing the User Interface: Strategies for Effective Human-Com-
puter Interaction. Reading, Mass.: Addison-Wesley.

Shneiderman, B. 1983. Direct Manipulation: A Step beyond Programming Languages.
IEEE Computer 16(8): 57–69.

Shoham, Y. 1997. An Overview of Agent-oriented Programming. In Software Agents, ed
J. M. Bradshaw. Menlo Park, Calif.: AAAI Press.

Shoham, Y. 1993. Agent-Oriented Programming. Artificial Intelligence 60(1): 51–92.

Simmons, R. 1995. The 1994 AAAI Robot Competition and Exhibition. AI Magazine
16(2): 19–30.

Singh, M. P. 1994. Multiagent Systems: A Theoretical Framework for Intentions, Know-
How, and Communication. Berlin: Springer-Verlag.

Smith, D. C., Cypher, A., & Spohrer, J. 1997. KidSim: Programming Agents Without a
Programming Language. In Software Agents, ed. J. M. Bradshaw. Menlo Park, Calif.:
AAAI Press.

Smith, D. C.; Irby, C.; Kimball, R.; Verplank, W.; and Harslem, E. 1982. Designing the
STAR User Interface. BYTE 4:242–282.

Smith, I. A., and Cohen, P. R. 1995. Toward a Semantics for a Speech Act–Based Agent
Communications Language. In Proceedings of the CIKM Workshop on Intelligent In-
formation Agents, eds. T. Finin and J. Mayfield. New York: Association of Computing
Machinery.

Sowa, J. F. 1990. Crystallizing Theories out of Knowledge Soup. In Intelligent Systems:
State of the Art and Future Systems, eds. Z. W. Ras and M. Zemankova. London: Ellis
Horwood.

Sowa, J. F. 1989. Knowledge Acquisition by Teachable Systems. In EPIA 89, Lecture

AN INTRODUCTION TO SOFTWARE AGENTS 45

Notes in Artificial Intelligence, eds. J. P. Martins and E. M. Morgado, 381–396. Berlin:
Springer-Verlag.

Steels, L. 1995. The Artificial Life Roots of Artificial Intelligence. In Artificial Life: An
Overview, ed. C. G. Langton, 75–110. Cambridge, Mass.: MIT Press.

Sullivan, J. W., and Tyler, S. W., eds. 1991. Intelligent User Interfaces. New York: Associa-
tion of Computing Machinery.

Tackett, W. A., and Benson, S. 1985. Real AI for Real Games: In Technical Tutorial and
Design Practice, 467–486.

Tesler, L. G. 1991. Networked Computers in the 1990s. Scientific American, September,
86–93.

Turing, A. M. 1950. Computing Machinery and Intelligence. Mind 59(236): 433–460.

Van de Velde, W. 1995. Cognitive Architectures—From Knowledge Level to Structural
Coupling. In The Biology and Technology of Intelligent Autonomous Agents, ed. L. Steels,
197–221. Berlin: Springer Verlag.

Vere, S., and Bickmore, T. 1990. A Basic Agent. Computational Intelligence 6:41–60.

Virdhagriswaran, S.; Osisek, D.; and O’Connor, P. 1995. Standardizing Agent Technolo-
gy. ACM Standards View. In press.

Weld, D.; Marks, J.; and Bobrow, D. G. 1995. The Role of Intelligent Systems in the Na-
tional Information Infrastructure. AI Magazine 16(3): 45–64.

White, J. 1997. A Common Agent Platform, http://www.genmagic.com/Internet/Cap/
w3c-paper.htm, General Magic, Inc., Sunnyvale, California.

White, J. 1997. Mobile Agents. In Software Agents, ed. J. M. Bradshaw. Menlo Park,
Calif.: AAAI Press.

Whittaker, S. 1990. Next-Generation Interfaces. Paper presented at the AAAI Spring
Symposium on Knowledge-Based Human-Computer Interaction, Stanford, California,
March.

Wiederhold, G. 1995. Digital Libraries, Value, and Productivity, Stanford University.

Wiederhold, G. 1992. Mediators in the Architecture of Future Information Systems.
IEEE Computer, March, 38–49.

Wiederhold, G. 1989. The Architecture of Future Information Systems, Technical Re-
port, Computer Science Department, Stanford University.

Williams, B. C., and Nayak, P. P. 1996. Immobile Robots: AI in the New Millennium. AI
Magazine 17(3): 17–35.

Winograd, T. 1973. A Procedural Model of Language Understanding. In Computer
Models of Thought and Language, eds. R. Schank and K. Colby, 249–266. New York:
Freeman.

Wooldridge, M. J., and Jennings, N. R. 1995. Agent Theories, Architectures, and Lan-
guages: A Survey. In Intelligent Agents: ECAI-94 Workshop on Agent Theories, Architec-
tures, and Languages, eds. M. J. Wooldridge and N. R. Jennings, 1–39. Berlin: Springer-
Verlag.

46 BRADSHAW

Section One

Agents & the User Experience

