
Automated Generation of Enforcement Mechanisms for Semantically-rich
Security Policies in Java-based Multi-Agent Systems

Gianluca Tonti 1,2,, Rebecca Montanari1, Jeffrey M. Bradshaw2, Larry Bunch2,

Renia Jeffers2, Niranjan Suri2, Andrzej Uszok2

1Dipartimento di Elettronica, Informatica e Sistemistica (DEIS)

University of Bologna
Viale Risorgimento 2, 40136 Bologna - ITALY

{gtonti, rmontanari}@deis.unibo.it

2 Institute for Human and Machine Cognition (IHMC)
40 S. Alcaniz Street, Pensacola, FL 32502 - USA

{jbradshaw, rjeffers, lbunch, nsuri , auszok}@ihmc.us

Abstract

Policies are being increasingly used for controlling the
behavior of complex systems (including agent systems).
The use of policies allows administrators to specify agent
permissions and obligations without changing source
code or requiring the consent or cooperation of the
entities being governed. Past approaches to policy repre-
sentation have been restrictive in many ways. By way of
contrast, semantically-rich policy representations can
reduce human error, simplify policy analysis, reduce
policy conflicts, and facilitate interoperability. However,
semantically-rich policies increase the complexity of
fielding policy-governed multi-agent systems. This paper
discusses some technical challenges to automatically
enforce semantically-rich security policies in Java-based
multi-agent systems and presents an engineering ap-
proach for addressing some of these challenges. We have
developed a first implementation that allows to enforce
OWL policies represented using the KAoS policy frame-
work into multi-agent systems built on top of the JDK1.4.
The proposed solution allows to control the behavior of
agents at a high level of abstraction and exploits the
security mechanisms provided by the Java Authentication
and Authorization Service (JAAS) to enforce OWL polici-
es.

1. Introduction

The multi-agent paradigm offers a promising software
engineering approach for the development of applica-
tions in complex environments [3; 12]. By their ability to
operate autonomously without constant human supervi-
sion, agents can perform tasks that would be impractical
or impossible using traditional software techniques [22;
1]. On the other hand, this additional autonomy, if un-
checked, also has the potential of causing severe damage
if agents are poorly designed, buggy, or malicious. The

technical challenge is to assure that agents will always
operate within the bounds of any behavioral constraints
currently in force while remaining responsive to human
control [4].

Explicit policies can help in dynamically regulating
the behavior of agents and in maintaining an adequate
level of security, predictability, and responsiveness to
human control. By changing policies, the levels of agent
autonomy can be continuously adjusted to accommodate
variations in externally imposed constraints and envi-
ronmental conditions without modifying the agent code
or requiring the cooperation of the agents being governed
[6].

A policy-based approach calls for a policy model
specifying how agent permissions and obligations can be
expressed and for an enforcement model supporting
dynamic control of agent behavior according to desired
policies. A few research activities have emerged that
propose semantically-rich policy-based approaches to the
control of agent systems [8; 14]. Most proposals focus on
the problem of policy definition by recognizing the need
for the adoption of semantically-rich policy representa-
tions [24]. In contrast, relatively little attention has been
paid to building general infrastructure-based mechanisms
that can monitor and govern the behavior of agent sys-
tems.

The development of enforcement mechanisms for se-
mantically-rich policy in agent systems raises several
challenges. Semantically-rich policy specifications can be
difficult to implement because their high-level descrip-
tions can be far from the concrete implementation details
required by policy enforcement components. The gap
between specification and implementation of policies has
to be resolved to a greater or lesser degree by human
programmers, consistently with the capabilities and fea-
tures of each platform. The mapping of specification to
implementation usually requires ad-hoc platform-specific
solutions developed each time from scratch and hardly
reusable.

Novel engineering techniques and tools will be re-
quired to reduce the effort of integrating semantically-
rich policies into multi-agent systems, especially into
those that have not been specifically designed to make
use of policies in their operation. This paper discusses
some technical challenges that inhibit fully automatic
integration of the enforcement mechanisms needed to
maintain agent behavior in conformance to some set of
semantically-rich policies (section 2). In particular, we
describe an engineering approach to automatically inte-
grate enforcement of semantically-rich policies within
JAAS-based systems—whether agent-based or not. Our
approach relies on the adoption of OWL ontologies to
describe policy concepts and JAAS entities, and on the
design of policy enforcement adaptors directly pluggable
into the Java systems being governed (section 3). The
paper describes the implementation of our approach
within the KAoS policy and domain services framework,
which supports both agent-based and traditional distrib-
uted applications (section 4). In the concluding section,
future research steps are highlighted (section 5).

2. Semantically-rich Policies for controlling
Agent Autonomy

Policies, which constrain the behavior of system compo-
nents, are becoming an increasingly popular approach to
dynamic adjustability of distributed applications in aca-
demia and industry. Policy-based network management
has been the subject of extensive research over the last
decade [27; 10]. Policies are typically applied to auto-
mate network administration tasks, such as configuration,
security, recovery, or quality of service (QoS).

The scope of policy management is increasingly going
beyond these traditional applications in significant ways.
The management of multi-agent systems represents one
of the most promising fields for the exploitation of pol-
icy-based approaches [2; 5; 14].

Controlling agent behavior is a complex task because
agent behavior cannot be programmed a priori to face any
operative run-time situation, but requires dynamic and
continuous adjustments to allow agents to act in any
execution context in the most suitable way. Policies pro-
vide the dynamic bounds within which an agent is permit-
ted to function autonomously and limit the possibility of
unwanted events occurring during operations. Policies
can be exploited to control agent-to-resource and agent-
to-agent interactions (authorization policies) and to im-
pose upon agents to perform some action or waive some
requirement (obligation policies). Obligation policies
also allow agent system administrators to specify what
actions must be specified when security violations occur
and who must execute those actions; what auditing and
logging activities must be performed, when, and by
whom.

Note that control and autonomy are related in inverse
fashion [11]: the larger the range of agent permitted ac-

tions and the smaller the set of agent obligations, the
more freely the agent can act [6]. Elsewhere we have
pointed out the many benefits of policy-based ap-
proaches, including reusability, efficiency, extensibility,
context-sensitivity, verifiability, support for both simple
and sophisticated components, protection from poorly-
designed, buggy, or malicious components, and reasoning
about agent behavior [4].

2.1. Policy Representation

Many approaches for policy representation have been
proposed. These include formal policy languages that can
be processed and interpreted easily and directly by a
computer, rule-based policy notations that use an if-then-
else format, representations of policies as entries in a
table consisting of multiple attributes, and ontology-based
policy representations. Each form of policy representa-
tion exhibits pros and cons, and thus the choice of an
approach should be driven by the characteristics of the
application domain and by the application requirements.

However, our experience to date seems to indicate
quite clearly that the adoption of semantic representations
provide several advantages for policy representation in
multi-agent systems [24]. The use of ontologies allows
the policy framework to be easily extended by simply
adding new concepts to the ontology. In traditional lan-
guages this task is usually much trickier. In addition, the
possibility to simultaneously model policy concepts at
multiple levels of abstractions increases the control flexi-
bility, by permitting users to choose the granularity of the
control to apply depending on their expertise. For exam-
ple, modeling policies at a high level of abstraction can
allow users to focus their attention more on domain-
related management requirements than on implementation
details.

An ontology-based description of policy enables the
system to use concepts to describe the environments and
the entities being controlled, thus simplifying their de-
scription and improving the analyzability of the system.
Policy frameworks can take advantage of this powerful
property in the implementation of features such as policy
conflict detection and harmonization. In addition, ontol-
ogy-based approaches simplify access to policy informa-
tion, with the possibility of dynamically calculating rela-
tions between policies and the environment, entities, or
other policies based on ontology relations rather than
fixing them in advance. Like databases, it is possible to
access the information provided by querying the ontology
according to the ontology schema. This is an advantage in
comparison to traditional languages that provide only
pre-defined queries to access information and static rep-
resentations of policy. Finally, ontologies can also sim-
plify the sharing of policy knowledge among different
organizations and applications, thus increasing the possi-
bility for entities to negotiate policies and to agree on a
common set of policies.

However, the exploitation of semantic languages for
policy representation requires addressing several chal-
lenges. Ontology-based policy representations currently
rely on a complex syntax, long declarative descriptions,
and hyperlinks and references to external resources that
make policy specifications very difficult to read in their
native formats. This issue is typically addressed by defin-
ing graphical user interfaces that convert easy-to-read
policy specifications into the syntax required for formal
policy representation. A second challenge that has de-
layed widespread use of semantically-rich policy lan-
guages is the gap between policy specifications and en-
forcement mechanisms. Support for automated enforce-
ment of semantically-rich policies into Java-based sys-
tems is the focus of this paper.

2.2. Policy Enforcement and Integration Issues

To better understand the complexity of automatically
generating enforcement mechanisms from semantically-
rich policy specifications, it is useful to review the set of
policy services that have been generally considered nec-
essary for comprehensive management and enforcement
of these sorts of policies [8; 15; 21]. Our goal in this
section is to give a notional idea of policy services archi-
tectures, and not to provide details on each service. Note
that a given policy framework implementation may com-
bine one of more of these services in a single component.

Figure 1. General policy framework architecture.

The upper part of figure 1 shows a set of policy manage-
ment services supporting: policy specification (Specifica-
tion Service), mapping between policy ontologies and
concrete agent system entities (Semantic Matcher), policy
storage (Repository Service), policy distribution to inter-
ested entities (Distribution Service), policy disclosure to
provide an interface for authorized entities to query and
resolve questions about policies and controlled entities
(Disclosure Service), and reasoning, analysis, and simula-
tion to detect and resolve policy conflicts and otherwise

provide reasoning support for the other services (Reason-
ing, Analysis, Simulation).

The lower part of figure 1 shows the set of policy en-
forcement services for monitoring both application-level
and environment-level conditions (Monitoring Service),
for evaluating the run-time applicability of policies (e.g.,
checking pre-conditions or verifying policy constraints
limiting the run-time applicability of the policy) (Deci-
sion Service), and to activate and carry out policy en-
forcement as required (Enforcement Service).

The design of a policy-governed agent system can be
complex because it requires not only developing the
policy services but also extending the agent platform to
take advantage of them. Policy-unaware agent platforms
do not typically provide any means that allow developers
to monitor and adapt their behavior without modifying
the code of the agents themselves.

Whereas policy management services can be designed
and implemented more or less independently from agent
platforms, policy enforcement services require policy
system programmers to know agent platform implementa-
tion details and to develop platform-specific adaptors.
Policy enforcement consists of a chain of management
tasks, i.e., the monitoring of the conditions causing policy
activation, the policy evaluation and the policy execution.
Each of these tasks has to be accomplished by specific
enforcement adaptors.

The development of platform-specific adaptors, how-
ever, increases both the integration programming effort
and time. The typical approach is to write and integrate a
version of each adaptor for each agent platform.

We believe that the adoption of ontologies can play a
key role to facilitate the automatic design and develop-
ment of enforcement adaptors. Ontologies can provide a
clear description of all the entities and relations involved
in the policy lifecycle management including the policies,
the policy services, and the agent system components to
govern. Ontologies can be used as inputs to specific tools
that are responsible for generating the adaptor pieces of
code. By interpreting and reasoning about the contents of
the ontologies the tools can produce the adaptor code
more easily. The task of integrating the adaptor code into
the specific platform to control can benefit from the
adoption of weaving and reflective techniques [16; 20].

We have started to explore the adoption of ontologies
and of the engineering schema shown in figure 2 in the
context of JAAS-based systems. Section 3 describes our
approach and highlights the main benefits and limitations
we have observed in the adoption of semantically-rich
security policies for governing JAAS-based multi-agent
systems.

Agent Platform
Code

Adaptors
Generator

Platform-Specific
Ontologies

Policy-Specific
Ontologies

Adaptors
Integration

Policy
Management
Framework

Monitoring/Decision/Enforcement
Adaptors

Figure 2. Ontology-driven adaptor code generation

3. Enforcing Semantically-Rich Policies in a
JAAS-Based Agent System

The Java Authentication and Authorization Service
(JAAS) provides a framework and standard programming
interface for authenticating users and for assigning privi-
leges ([17;28]). JAAS augments the Java platform with
both user-based authentication and access control capa-
bilities. In particular, the JAAS Authentication service
supports different forms of user authentication by means
of pluggable authentication services, while the JAAS
Authorization service can provide code-centric access
control, user-centric access or a combination of both.
Once authentication has successfully completed, JAAS
provides the ability to enforce access controls upon the
principals associated with the authenticated subject.
JAAS uses the term subject, to refer to any user of a
computing service. Either a user or a computing service,
therefore, can play the role of subject. To identify the
subjects with which it interacts, a computing service
typically relies on names. The term, principal, represents
a name associated with a subject.

Our approach extends JAAS security mechanisms by
adding the capability to define, manage and enforce com-
plex semantically-rich policies in place of or in addition
to the simple default Java security policies. It relies on a
set of ontologies to describe policy-related concepts and
on a set of policy adaptors to ensure policy enforceability
within the frameworks to control. In particular, the former
set includes ontologies to describe policies, actors (hu-
man or computational), actions being governed by policy,
the context of policy applicability, JAAS-related concepts
regarding the authorization and authentication process,
and the relations among all these concepts. The latter set
includes adaptors designed to work in compliance with
standard Java Virtual Machines (JVM) and be directly
plugged into them without modifying the Java code of the
agent platform or of the agents themselves.

3.1. Ontologies to Govern JAAS-Authenticated

Entities

The adoption of semantically-rich policies for JAAS-
based multi-agent systems requires the design of an ap-
propriate set of ontologies to represent the main concepts

involved in policy-based control of JAAS system. We
propose one policy-specific ontology (the policy ontol-
ogy) and two JAAS-specific ontologies to model JAAS-
related concepts (the Principal ontology and the JAAS
action ontology).

The policy ontology contains classes and instances of
authorization policies and obligation policies. The policy
ontology models the typical basic elements of authoriza-
tion and obligation policies: the actor, the action and the
action context. The actor of a policy refers to the entity
or the set of entities attempting to perform some policy-
governed actions. Action1 classes represent the set of
actions that policies can monitor and constrain within a
system. The action context describes the properties and
relations defining the execution context of the action
including all the entities that are involved in the action
(e.g., the entity being accessed in an access control pol-
icy) and the conditions (e.g., the time or location of the
action) that determine the applicability of the policy. In
addition, for obligation policies the policy ontology in-
cludes the description of the policy trigger element, i.e,
of the causing event for a policy to take on actions.

A simplified diagram showing portions of the Princi-
pal ontology is shown in Figure 3A. The term principal
refers to an identity that can be assigned to actors (e.g.
humans, software or robotic agents, computational enti-
ties) after an authentication process. The ontology in-
cludes a taxonomy of controllable principals with each
kind of principal represented by a specific class in the
ontology. In addition to human-readable principal names
that unequivocally identify specific people, the ontology
includes Java principals to represent identities associated
with requests originating from a Java program. Each Java
Principal (e.g. the ‘Sample Principal’ frequently adopted
as demo example in JAAS tutorials) should also be
represented as a subclass of the Java Principal class. The
property set of the Java Principal class includes the prin-
cipal identifier and a reference to the Java class defining
the principal.

Figure 3B shows a fragment of the Java Action On-
tology. Each Java action is mapped to a subclass of the
generic action class represented in the Policy ontology
and describes the set of actions controllable by using the
built-in Java security mechanisms. To keep the diagram
simple, figure 3B shows only the most common control-
lable Java actions: the attempt to access a file by open-
ing/reading/writing/closing it and the attempt to access a
socket by accepting/connecting to/listening/ resolving a
host connection. To simplify the policy specification task,
high-level action concepts can be assembled from these
atomic concepts.

1 The action may be as abstract or fine-grained as desired; also,

atomic actions may be configured into sets of composed ac-
tions [26]

A

Principal

Human-Readable Principal

Driving Licence
Number

Passport
Number

INS
Number

Social Security
Number

ITIN
Number

is a

is a

Software Principal

is a

is a

Java Principal

is a
Sample Principal

B

is a

Action

Java Action

Java Access Action

File Accesses SocketFile Socket Accesses

ReadFileAction

WriteFileAction

ExecuteFileAction

DeleteFileAction

AcceptSocketAction

ListenToSocketAction

ConnectToSocketAction

ResolveSocketAction

is a

Accessed entityAccessed entity

is a

is a

is a

C Actor PrincipalAction
is authenticated as

represents

capable Of
Performing

controlled By

Natural Actor Artificial Actor

Hardware ActorHuman

Policy
is a

is a is a

is a

Robot

is a

Agent

Software Actor

Figure 3. Simplified diagrams showing portions of the
JAAS Ontologies3

Figure 3C provides an example of possible relations
among the principal class and the other main classes of
the Policy ontology. In particular, any agent can be
represented as a specific kind of actor that can be authen-
ticated and recognized with principals and then governed
by policies.

3.2. Policy Enforcement Adaptors to Control

JAAS-Authenticated Actors

To control JAAS-Authenticated Actors accordingly to
policy specifications we have designed and developed
two platform-specific adaptors directly pluggable into
JVMs, one for performing the agent application and sys-
tem monitoring tasks (the JAAS Monitoring Adaptor) and
one for supporting access control decisions (the JAAS
Authorization Enforcement Adaptor). In addition, we
have designed two policy services that interoperate with
the JAAS-specific adaptors in charge of performing pol-
icy evaluation (the JAAS Decision Service) and of sup-

3 Diagrams produced using IHMC’s CMap Tools

[http://cmap.ihmc.us/]

porting obligation policy enforcement (the JAAS Obliga-
tion Enforcement Service).

The JAAS Monitoring Adaptor relies on the default
Java security mechanisms to monitor the tasks of JAAS-
Authenticated Actors. In particular, the adaptor senses
and notifies to interested entities, e.g., the decision, the
authorization and obligation enforcement services, all the
attempts of a JAAS-Authenticated Actors to invoke
methods that contain a call to the Java checkPermis-
sion() method. For example, any attempt to open a file
by calling the constructor of the
java.io.FileInputStream class is detected because it
triggers a permission check. We rely on this Java security
mechanism to sense the execution of application methods.

The JAAS Authorization Enforcer Adaptor is imple-
mented as a customized Java Security Manager that ex-
tends the default SecurityManager class to intercept any
call to the checkPermission method and to interoperate
with the JAAS Decision Service when a check permission
is requested. In particular, any time the Authorization
Enforcement Adaptor has to handle a check permission
call, it creates a Java object instance that wraps the de-
scription of the permission to check in an ontology-
compliant form and sends it to the JAAS Decision Ser-
vice. When the decision process completes, the JAAS
Authorization Enforcer Adaptor returns the control to the
caller principal thread if the permission can be granted,
otherwise it throws a security exception.

Figure 4 shows the main components and interactions
involved during the enforcement of an authorization
policy. When a JAAS Principal attempts to perform a
method that can be controlled by the JAAS Monitoring
Adaptor, such as an access to a file, the JAAS Monitoring
Adaptor triggers the policy enforcement by calling the
checkPermission method on the currently running
Security Manager (i.e. the JAAS Authorization Enforce-
ment Adaptor). For each permission check the JAAS
Authorization Enforcement Adaptor queries the JAAS
Decision Service and returns control to the Principal
thread only if the policies in force authorize the reading
of the file.

The JAAS Decision Service is designed as a stand-
alone service that can reason over the set of semantically-
rich policies in force. It relies on the reasoning capabili-
ties provided by the external policy framework integrated
with the JAAS system to determine whether a permission
can be granted or whether an obligation action has to be
enforced.

The JAAS Obligation Enforcer Service is designed as
a service waiting for obligation action directives coming
from the JAAS Decision Service. For each received di-
rective the service has the capability to interpret and to
enforce it. For this reason, the implementation of the
JAAS Obligation Enforcement Service depends upon the
kind of obligation policy to enforce and can include sev-
eral specialized sub-services, one for each kind of en-
forceable policy action.

Extended
Security Manager

FileInput
Stream

Policy Framework JAAS-based Agent Platform

JAAS Decision
Service

Principal
Thread

new ()

CheckPermission ()Is Principal
authorized to access
FileInputStream?

Permission / Denial

Control Return /
Security Exception Control Return /

Security Exception

Is action
authorized?

JAAS Monitoring
Adaptor

JAAS Authorization
Enforcement Adaptor

Figure 4. Authorization Policy Enforcement

Figure 5 shows the enforcement process for obligation
policies. The JAAS Monitoring Adaptor works in similar
fashion as for an authorization policy, while the JAAS
Decision Service retrieves not only the authorization
policies but also the obligation policies related to the
attempted action. For any triggered obligation policy,
authorization permissions to enforce the obliged actions
are also checked. Then, for any permitted action it dele-
gates the action enforcement to the JAAS Obligation
Enforcement Service. The enforcement of obligation
policy actions can be performed before, after or
simultaneously with the enforcement of the authorization
policies with the same triggering condition (the picture
shows the case of simultaneous enforcement); the choice
can be delegated to policy administrators or can be part
of the policy specification itself.

It is finally worth noting that we have chosen to dele-
gate some policy enforcement tasks to services running
outside the platform to control instead of using platform-
specific adaptors to be as less intrusive as possible on the
platform to control, avoiding the adaptation of the plat-
form code that their integration would require. On the
other hand, our approach relies on the customization
facilities provided by the Java security architecture to
plug-in the platform-specific adaptors, and thus can be
applied to standard JVM without requiring adaptation of
neither the code of the Java-based agent platform nor of
the agents themselves.

In particular, the Authorization Enforcement Adaptor
can be plugged into the JVM by installing it as a custom-
ized Security Manager interoperating with a customized
Policy provider (the Java security architecture permits the
customization of these components when launching the
JVM). Thus the JAAS authentication process works in
the standard way, while the authorization process distin-
guishes between principal-centric permission and code-
centric permissions: for the former the authorization
process is delegated to the policy frameworks, while the
latter are enforced by using the standard Java Access
Controller algorithm.

Extended
Security Manager

FileInput
Stream

Policy Framework

JAAS
Decision
Service

Principal
Thread

new ()
CheckPermission ()

Is Principal
authorized to

access the file?

Permission /
Denial

Control Return /
Security Exception

Control Return /
Security Exception

Which
obligations are
triggered by
the action?

JAAS Obligation
Enforcement

Service

Obligation
Actions

Enforcement

Is action
authorized?

JAAS-based Agent Platform
JAAS Authorization

Enforcement Adaptor
JAAS Monitoring

Adaptor

Are obligation
actions

authorized?

Figure 5. Obligation Policy Enforcement

3.3. Main Benefits and Limits of Our Approach

In addition to the general benefits provided to the man-
agement of agent platforms described in Section 2.1, the
automatic integration of semantically-rich policies within
Java-based platforms can provide more context-specific
benefits to their management of security.

In the first place, the policy specification task can be
made easier and affordable for users without Java pro-
gramming expertise. Semantically-rich policy representa-
tions permit the representation of entities and relations at
the desired level of abstraction using ontology concepts.
By way of contrast, the specification of policies in Java
requires users to be familiar with low-level programming
concepts, such as policy entries, principal packages and
class names, as shown in Figure 6 where a Java policy
assigning the right to read a file to a specific principal is
specified with the assistance of the graphical policytool
included in JDK distributions.

Figure 6. Java policy specification with Java policytool

In addition, semantically-rich representations can en-

rich the policy expressiveness to fit a wider spectrum of
needs and requirements. For example, they permit the
specification not only of positive access authorization
policies such as in Java, but also negative authorization
policies, obligation policies, as well as arbitrary policies
about any aspect of agent behavior.

Moreover, other benefits can be derived from the
adoption of the policy management services provided by
policy frameworks, as described in section 2.2. For ex-
ample, the Specification Service can simplify the policy
specification process through powerful and intuitive
graphical interfaces. The Repository Service and Distri-
bution Service can relieve users from the burden of
spreading and manually linking policy files to distributed
JVMs. In addition it can allow dynamic changing of
policies at runtime without requiring a direct management
of the policy refreshment in the Java code. The Disclo-
sure Service can provide a centralized support for brows-
ing policies and monitoring policy configurations spread
among different agent platforms. Finally the Reasoning,
Analysis, and Simulation Service can alert policy pro-
grammers about possible conflicts (both modality or
application-specific conflicts [8; 19]) between newly
edited policies and previously defined ones. Then, it can
assist users in resolving the detected conflicts with ap-
propriate mechanisms, thus minimizing the risk of policy
conflicts among specifications from different platforms,
administrators, and times.

Finally, while the Java Access Controller algorithm
for checking Java permission always assumes a negative
default authorization modality (no actions are authorized
if not explicitly permitted), the adoption of a customized
Decision Adaptor can make the default modality a con-
text–dependent property and delegate the choice to local
system administrators.

However, for assuring the capability to automatically
enforce semantically-rich policies without adaptation of
the Java code, our approach can support only a con-
strained set of enforceable policies. A first constraint
regards the set of policy triggering conditions that can be
monitored which is limited to the set of resource access
controls performed by the JVM, such as accesses to files,
to the network via socket, or to audio system resources.
To extend this set, explicit calls to the Security Manager
including the description of the attempted action should
be included in the code of the resources to control, while
corresponding ontologies describing the triggering condi-
tion should be loaded in the policy framework.

Another constraint regards the set of enforceable ob-
ligation actions. The Java framework doesn’t provide the
facilities necessary to generically force an active entity to
perform a certain task from its outside. Thus, to avoid the
adaptation of the Java code to include specific Obligation
Enforcement Adaptors, the current set of applicable obli-
gation actions is limited to those performing actions out-
side the framework to control or on its public interface,
like the notification of warning messages to reachable
humans controllable by Notification policies [9].

Finally, we note that to apply our automatic
semantically-rich policy integration to running JAAS
applications, their execution should be temporarily
stopped and restarted after the plug-in of the enforcement
adaptors.

4. Case Study: Automatic Enforcement of
KAoS Policies in JAAS-based Frameworks

We have started to evaluate the feasibility of our pro-
posed approach by implementing it within the KAoS
policy framework.

4.1. KAoS Policy and Domain Services

KAoS is a collection of componentized policy and do-
main management services compatible with several agent
frameworks, as well as some popular distributed comput-
ing platforms (e.g., Semantic Web Services, Grid Com-
puting (Globus GT3), CORBA) [4; 8; 13; 25; 26]. KAoS
has been deployed in a wide variety of applications, from
coalition warfare [2], to robustness and survivability for
distributed systems [18; 23], to human-agent teamwork in
military and space applications [7], to cognitive prosthe-
ses [4].

KAoS domain services provide the capability for
groups of software components, people, resources, and
other entities to be organized into domains and subdo-
mains to facilitate collaboration and external policy ad-
ministration. KAoS policy services allow for the specifi-
cation, management, conflict resolution, and enforcement
of policies within domains. Policies are currently repre-
sented in OWL as ontologies.

The KAoS Policy Administration Tool (KPAT) is a
graphical user interface that assists users in policy speci-
fication, revision, and application, in browsing and load-
ing ontologies and in analyzing and deconflicting newly
defined policies. As policies, domains, and application
entities are defined using KPAT, the appropriate OWL
representations are generated automatically in the back-
ground and asserted into or retracted from the system,
insulating the user from having to know OWL or from
coding directly in a policy language. Policy templates
allow various classes of policy definitions to be defined
as high-level domain-specific abstractions.

In addition, KAoS provides enforcement services as
implemented by Directory Services, Guards, and Enforc-
ers. The Directory Service is responsible for persistence,
analysis, and distribution of policies, while Guards and
Enforcers work together to ensure compliance with au-
thorization and obligation policies. For instance, in the
case of an authorization policy, the KAoS Enforcers
create action descriptions when agents attempt policy-
governed actions. These are passed to the Guard, which
checks its store of local policies to determine whether the
given action instance is in the range of permitted actions.
If the Guard does not find any policy applicable to the
action description, it answers the authorization question
consistent with the default authorization modality of the
appropriate domain for the context of the action. Defaults
either correspond to a laissez-faire mode, where every-
thing is permitted that is not explicitly forbidden, or a

tyrannical mode, where everything is forbidden that is
not explicitly permitted. Obligation policy enforcement
works in a similar fashion. However rather than preemp-
tively prohibiting actions, the enforcers either monitor the
performance of the obligations, trigger the execution of
actions by the agent intended to satisfy the obligations,
or—in the case of special kinds of enforcers called en-
ablers—fulfill the obligations themselves. Any necessary
handling of sanctions for non-performance can also be
performed by the enforcers.

4.2. Enforcement Adaptors for KAoS

The modular design of the KAoS policy framework has
permitted us to easily integrate the enforcement adaptors
required by our approach within its platform. As
described in Section 3, the JAAS Monitoring Adaptor
relies on the JVM capabilities to check several types of
resource access thus not requiring it to be implemented as
a KAoS component.

The KAoS-JAAS Authorization Enforcement Adaptor
implements the interface of the KAoS enforcer from one
side and extends the Java Security Manager class from
the other side. As a KAoS Enforcer the adaptor is associ-
ated with a KAoS Guard running on a remote KAoS
framework, while as a customized Security Manger it
extends the behaviour of the default Java Security Man-
ager, as shown in section 3.2.

The KAoS Decision Service has been implemented as
an instance of the KAoS Guard running as an agent on
the KAoS platform. Any JVM instance to be policy-
controlled has to be linked to a corresponding instance of
the KAoS Decision Service on the KAoS Framework.
The communication protocol between the KAoS Authori-
zation Enforcer and the KAoS Decision Adaptor works as
explained in section 3.2, and has been implemented on a
TCP/IP Socket connection.

Finally, we have added the capability to enforce Obli-
gation policies of type Notification within JAAS frame-
works by developing the required KAoS Obligation En-
forcer Service as a KAoS NotificationAgent agent run-
ning on the KAoS framework. The agent implements the
KAoS Enforcer interface to enforce the Notification
policies.

4.3. Automatic Enforcement of KAoS Notifica-

tion Policy

We now show an example of automatic enforcement of a
KAoS policy in a JAAS-based application. The policy
example is an instance of a Notification policy of kind
Obligation stating that “When an actor authenticated by
Principal tries to locally open the file ‘A.txt’, the system
should send a notification E-mail to the author of the file
warning him or her about the attempted access”.

After loading into KAoS both our Java Ontologies
[30] and the Notification Policy Ontologies describing

the notification process-related concepts and instances
[31], the policy can be intuitively specified by using the
KPAT graphical interface, as shown in Figure 7. After
Specification and commitment into the KAoS Directory
Service, the policy is ready to be enforced.

Figure 7. Obligation Policy Specification in KPAT

On the Java-side, the platform/application to control has
to be run after plugging in it the KAoS-JAAS Authoriza-
tion Enforcement Adaptor provided by the KAoS library
as a customized Java Security Manager and Java Policy
provider. After authentication, any attempt to access the
file “A.txt” by Java Principals prompts the KAoS policy
framework to enforce both the authorization and the
obligation policies triggered by this attempt. Independent
of whether the authorization to access the file is granted
or not, the KAoS Decision Service retrieves the obliga-
tion policy example from the KAoS Directory Service
and enforces its action through the NotificationAgent,
that sends an e-mail to the file author warning him about
the attempted action and the Principal identity associated
to the attempting actor.

Let us finally remark that KAoS provides also policy
conflict detection capabilities. Figure 8 shows the graphi-
cal wizard assisting users in resolving policy conflicts.
The wizard window is popped up on the user desktop any
time he or she tries to commit to the KAoS Directory
Service a policy in conflict with an existing one, such as
when trying to add a negative authorization policy deny-
ing the permission to enforce the previously committed
policy obligation action.

Figure 8. Policy Conflict Detection and Resolution

4.4. Performance

We have tested the performances of the KAoS policy
enforcement on a Pentium IV 1700 MHz, using 512 MB
of memory and Sun JDK 1.4.2 running on Microsoft
Windows XP operating system. For the test measure-
ments we have adopted the code of the ‘Sample’ JAAS
demo available at [29], modeling the access of Principals
to files. Table 1 reports the enforcement times required to
authorize the file access, in one case by applying the
standard Java policy included in the demo and in the
other case by applying a KAoS authorization policy with
the same meaning.

The larger time required by the enforcement of the
semantically-rich policy is mainly due to the time spent
for the serialization of a Java object describing the at-
tempted action to the KAoS Decision AdaptorService. In
particular, the total enforcement time can be divided as
follow:

• The time for building an action description intel-
ligible for the KAoS framework from the Java
permission is 30 ms;

• The time spent exchanging communications via
Socket between KAoS and the JVM, including
the serialization process is 90 ms ();

• The time spent by the KAoS framework to reason
over the set of policies in force and to authorize
the permission is 10 ms.

Table 1. Java and KAoS authorization policy enforcement time
 Enforcement

Time (ms)

Java ‘FilePermission’ Policy < 10

KAoS Semantic Authorization Policy 130

5. Conclusions and Future Work

An increasing number of approaches are adopting seman-
tically-rich policy representations for expressing con-
straints on the behavior of multi-agent systems. Semanti-
cally-rich policy representations seem to provide several
advantages in terms of increased expressiveness, analyz-
ability and interoperability. However, enforcement code
generation facilities and libraries of enforcement mecha-
nisms adapted to specific platforms are among the major
challenges limiting their widespread implementation. Our
proposed approach represents a first step toward address-
ing this issue by providing the design of generic policy
ontologies to control JAAS-based applications and
frameworks and of enforcement adaptors directly plug-
gable in the JVM to control.

Our preliminary experiences in developing this ap-
proach within the context of the KAoS policy framework
seem to indicate that the approach can simplify the pro-
grammer’s task of controlling Java applications security
by enriching the policy expressiveness with acceptable

enforcement performances. The proposed approach,
however, is currently restricted to the control of JAAS-
based implementations and to the management of policies
triggered by access control checking performed by stan-
dard JVMs. This is stimulating further research to enlarge
the set of currently controllable policy triggers and also to
export our approach to Java policy-unaware implementa-
tions while remaining rooted in semantic descriptions of
systems for guiding the automatic generation and installa-
tion of the enforcement adaptors.

As a final remark, we note that although the examples
in the paper focus on enforcement automation for agent
systems, there is nothing that intrinsically limits our ap-
proach from being applied to more traditional distributed
platforms or novel frameworks such as Grid Computing
and Web Services.

References
[1] Allen, J. F., & Ferguson, G. (2002). Human-machine
collaborative planning. Proceedings of the NASA
Planning and Scheduling Workshop. Houston, TX,
[2] Allsopp, D., Beautement, P., Bradshaw, J. M.,
Durfee, E., Kirton, M., Knoblock, C., Suri, N., Tate, A.,
& Thompson, C. (2002). Coalition Agents eXperiement
(CoAX): Multi-agent cooperation in an international
coalition setting. A. Tate, J. Bradshaw, and M.
Pechoucek (Eds.), Special issue of IEEE Intelligent
Systems, 17(3), 26-35.
[3] Bradshaw, J. M. (Ed.). (1997). Software Agents.
Cambridge, MA: The AAAI Press/The MIT Press.
[4] Bradshaw, J. M., Beautement, P., Raj, A., Johnson,
M., Kulkarni, S., & Suri, N. (2003). Making agents
acceptable to people. In N. Zhong & J. Liu (Ed.),
Intelligent Technologies for Information Analysis:
Advances in Agents, Data Mining, and Statistical
Learning. (pp. in press). Berlin: Springer Verlag.
[5] Bradshaw, J. M., Boy, G., Durfee, E., Gruninger, M.,
Hexmoor, H., Suri, N., Tambe, M., Uschold, M., &
Vitek, J. (Ed.). (2003). Software Agents for the
Warfighter. ITAC Consortium Report. Cambridge, MA:
AAAI Press/The MIT Press.
[6] Bradshaw, J. M., Jung, H., Kulkarni, S., & Taysom,
W. (2004). Dimensions of adjustable autonomy and
mixed-initiative interaction. In M. Klusch, G. Weiss, &
M. Rovatsos (Ed.), Computational Autonomy. (pp. in
press). Berlin, Germany: Springer-Verlag.
[7] Bradshaw, J. M., Sierhuis, M., Acquisti, A.,
Feltovich, P., Hoffman, R., Jeffers, R., Prescott, D., Suri,
N., Uszok, A., & Van Hoof, R. (2003). Adjustable
autonomy and human-agent teamwork in practice: An
interim report on space applications. In H. Hexmoor, R.
Falcone, & C. Castelfranchi (Ed.), Agent Autonomy. (pp.
243-280). Kluwer.
[8] Bradshaw, J. M., Uszok, A., Jeffers, R., Suri, N.,
Hayes, P., Burstein, M. H., Acquisti, A., Benyo, B.,
Breedy, M. R., Carvalho, M., Diller, D., Johnson, M.,
Kulkarni, S., Lott, J., Sierhuis, M., & Van Hoof, R.

(2003). Representation and reasoning for DAML-based
policy and domain services in KAoS and Nomads.
Proceedings of the Autonomous Agents and Multi-Agent
Systems Conference (AAMAS 2003). Melbourne,
Australia, New York, NY: ACM Press,
[9] Bunch, L., Breedy, M. R., & Bradshaw, J. M. (2004).
Software agents for process monitoring and notification.
Proceedings of AIMS 04.
[10] Damianou, N., Dulay, N., Lupu, E. C., & Sloman,
M. S. (2000). Ponder: A Language for Specifying
Security and Management Policies for Distributed
Systems, Version 2.3. Imperial College of Science,
Technology and Medicine, Department of Computing, 20
October 2000.
[11] Falcone, R., & Castelfranchi, C. (2002). From
automaticity to autonomy: The frontier of artificial
agents. In H. Hexmoor, C. Castelfranchi, & R. Falcone
(Ed.), Agent Autonomy. (pp. 79-103). Dordrecht, The
Netherlands: Kluwer.
[12] Jennings, N. (2001). An agent-based approach for
building complex software systems. Communications of
the ACM, 44(4), 35-41.
[13] Johnson, M., Chang, P., Jeffers, R., Bradshaw, J. M.,
Soo, V.-W., Breedy, M. R., Bunch, L., Kulkarni, S., Lott,
J., Suri, N., & Uszok, A. (2003). KAoS semantic policy
and domain services: An application of DAML to Web
services-based grid architectures. Proceedings of the
AAMAS 03 Workshop on Web Services and Agent-Based
Engineering. Melbourne, Australia,
[14] Kagal, L., Finin, T., & Joshi, A. (2003). A policy
language for pervasive systems. Proceedings of the
Fourth IEEE International Workshop on Policies for
Distributed Systems and Networks, (pp.
http://umbc.edu/~finin/papers/policy03.pdf). Lake Como,
Italy,
[15] Kagal, L., Finin, T., & Joshi, A. (2003). A policy-
based approach to security for the Semantic Web. In D.
Fensel, K. Sycara, & J. Mylopoulos (Ed.), The Semantic
Web—ISWC 2003. Proceedings of the Second
International Semantic Web Conference, Sanibel Island,
Florida, USA, October 2003, LNCS 2870. (pp. 402-418).
Berlin: Springer.
[16] Kiczales, G., Lamping, J., Mendhekar, A., Maeda,
C., Videira-Lopes, C., Loingtier, J. M., & Irwin, J.
(1997). Aspect-oriented programming. Proceedings of
the European Conference on Object-Oriented
Programming (ECOOP) (LNCS 1241). Finland,
Springer-Verlag,
[17] Lai, C., Gong, L., Koved, L., Nadalin, A., &
Schemers, R. (1999). User authentication and
authorization in the Java platform. Proceedings of the
fifteenth Annual Computer Security Application
Conference (ACSAC 1999), (pp. 285-290).
[18] Lott, J., Bradshaw, J. M., Uszok, A., & Jeffers, R.
(2004). KAoS policy management for control of security
mechanisms in a large-scale distributed system. (pp.
submitted for publication).

[19] Lupu, E. C., & Sloman, M. S. (1999). Conflicts in
policy-based distributed systems management. IEEE
Transactions on Software Engineering—Special Issue on
Inconsistency Management.
[20] Maes, P. (1987). Concepts and experiments in
computational reflection. Proceedings of the Conference
on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA '87). ACM SIGPLAN
Notices, 22(10), 147-155.
[21] Montanari, R., Tonti, G., & Stefanelli, C. (2003). A
policy-based mobile agent infrastructure. Proceedings of
the 2003 Symposium on Applications and the Internet
(SAINT 2003), (pp. 370-379). Orlando, FL, IEEE Press,
[22] Myers, K., & Morley, D. (2003). Directing agents.
In H. Hexmoor, C. Castelfranchi, & R. Falcone (Ed.),
Agent Autonomy. (pp. 143-162). Dordrecht, The
Netherlands: Kluwer.
[23] Suri, N., Bradshaw, J. M., Carvalho, M., Cowin, T.
B., Breedy, M. R., Groth, P. T., & Saavendra, R. (2003).
Agile computing: Bridging the gap between grid
computing and ad-hoc peer-to-peer resource sharing. O.
F. Rana (Ed.), Proceedings of the Third International
Workshop on Agent-Based Cluster and Grid Computing.
Tokyo, Japan,
[24] Tonti, G., Bradshaw, J. M., Jeffers, R., Montanari,
R., Suri, N., & Uszok, A. (2003). Semantic Web
languages for policy representation and reasoning: A
comparison of KAoS, Rei, and Ponder. In D. Fensel, K.
Sycara, & J. Mylopoulos (Ed.), The Semantic Web—
ISWC 2003. Proceedings of the Second International
Semantic Web Conference, Sanibel Island, Florida, USA,
October 2003, LNCS 2870. (pp. 419-437). Berlin:
Springer.
[25] Uszok, A., Bradshaw, J. M., & Jeffers, R. (2004).
KAoS: A policy and domain services framework for grid
computing and semantic web services. Proceedings of the
Second International Conference on Trust Management.
Oxford, England,
[26] Uszok, A., Bradshaw, J. M., Jeffers, R., Johnson,
M., Tate, A., Dalton, J., & Aitken, S. (2004). Policy and
contract management for semantic web services. AAAI
2004 Spring Symposium Workshop on Knowledge
Representation and Ontology for Autonomous Systems.
Stanford University, CA, AAAI Press,
[27] Wright, S., Chadha, R., & Lapiotis, G. (2002).
Special Issue on Policy-Based Networking. IEEE
Network, 16(2), 8-56.
[28] Sun JAAS web site available at
http://java.sun.com/products/jaas/
[29] Sun JAAS demo available at
http://java.sun.com/j2se/1.4.2/docs/ guide/secrity/jaas/
JAASRefGuide.html# Sample
[30] KAoS OWL Java Ontologies available at
http://ontology.ihmc.us/Java/JavaOntologies.owl
[31] KAoS OWL Notification Ontologies available at
http://ontology.ihmc.us/Notification/NotificationOntologi
es.owl

