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ABSTRACT 

 
Two major forces brought about the development of the knowledge acquisition tools ETS (the Expertise Transfer System) and 
Aquinas: technology push and application pull. Ideas from many areas were gradually integrated to meet the growing demands of 
knowledge-based systems problems at The Boeing Company. This paper briefly traces the history of this development and the 
sources of many of our ideas, describes features and the reasons that they were added, and illustrates typical applications at each 
stage of evolution.  
 
First a brief analysis of the forces that led to the development of our knowledge acquisition tools is presented. Then a history of 
tool growth is shown. Included are various features that were introduced and the types of help they provided. Typical applications 
at each stage of development are illustrated. Finally, we list the next hurdles to be overcome and show how we expect to overcome 
some of them in the next few years. 
 
 

1. DYNAMIC TENSION: TECHNOLOGY PUSH AND APPLICATION PULL 
 

At each phase in the growth of new tools, there should be a balance between technology push and application pull. Developers 
have ideas they feel might be useful for solving a future application problem - technology push - and applications present more 
immediate problems that need to be solved - application pull. Technology push tends to be farsighted and application pull tends to 
be shortsighted. When technology push is the only force, there is a danger that any tools developed will not be useful since they 
are not anchored in real problems, only a developer's vision of what the problems may be. When application pull is the only force, 
tools tend to be developed for special purposes and are hard to generalize to other problems. In such a demand-driven 
environment, revolutionary (or even evolutionary) breakthroughs usually do not occur. Ideally, both of these forces should act on a 
technology development project at the same time, leading to tools that are farsighted, general, and yet useful for a variety of 
problems. 
 
Boeing's Advanced Technology Center provides a unique environment that fosters the interplay of technology push and 
application pull. The Center sponsored an Associates' Program that helped transfer artificial intelligence technology to the rest of 
Boeing. Associates spent one year at the Center, where they attended courses and developed prototypes to solve a specific 
problem in their home division. When the year's training was complete, Associates returned to their groups where they continued 
to develop and eventually field the applications. Over 95 Associates graduated from the program; the majority of them built 
knowledge-based systems. At the same time, the Center was working with universities to import advanced technology projects and 
was developing its own projects in the areas of vision, robotics, speech understanding, natural language, machine learning, and 
knowledge-based systems. 
 
 

2. SEEDS: THE ARCHITECTURAL PROFILE SYSTEM 
 

Our knowledge acquisition tools are rooted in Personal Construct Theory (Kelly, 1955) and related methods, especially techniques 
based on repertory grid elicitation and analysis. Boose first explored repertory grid techniques in 1976 while a student at the 
University of Maryland School of Architecture, working in the Computer Science Department's Artificial Intelligence group. He 
was trying to build a software system that would help people design their own homes. The first component, the Architectural 
Profile System, was supposed to find out how people felt about house environments in terms of textures, visual use of space, 
materials, utility, colors, overall design style (Cape Cod, Modern, etc.), privacy, use of glass, relationship to the outdoors, and so 
on. Once variables were identified, the system was to match the user's preferences to existing styles and canonical templates. Other 
components of the system would then help the user complete a detailed design. 
 
Boose explored the psychometric literature and implemented a repertory grid elicitation program in Fortran on a Univac 1108, 
based on Kelly's description of the Role Repertory Grid Test. Kelly's original repertory grid was used in psychotherapy. Elements 
were people the client knew; triadic comparison of these people helped elicit important characteristics (constructs) that could show 
clients how they viewed themselves and others. In the Architectural Profile System, descriptions of environmental situations were 
used as elements (for example, "A place where you like to read," "A crowded place that you like," "A place where you feel 
lonely"). Triadic elicitation produced constructs about the built environment (for example, small space / large space, hard surfaces 



/ soft surfaces, comfortable furniture / showy furniture). Kelly's original non parametric factor analysis was implemented to 
produce constellations of constructs; these constructs then fed a Lisp-based laddering process (Hinkle, 1965) in which questions 
about specialization and generalization were asked in an attempt to expand the constructs and link them into a network. Data were 
gathered from about 30 subjects who used the repertory grid elicitation program. 
 
This was as far as the system progressed. The next steps would have been to gather data about different architectural styles and 
components based on the types of constructs that were elicited (some data were assembled from styles based on about 20 well 
known architects), build a starting set of templates indexed to these style data, link the laddered network to the index, and build a 
graphics interface to show floor plans, elevations, and descriptions retrieved while using the system. 
 
 

3. KAQ: A FRONT END FOR TEIRESIAS IN EMYCIN 
 

In the spring of 1983, Boose joined the Boeing Artificial Intelligence Center (part of the Advanced Technology Applications 
Division, later to become the Advanced Technology Center). The Associates' Program started that summer with about 12 students. 
Early problems faced by the Associates who tried to build expert systems provided application pull for the initial knowledge 
acquisition efforts at the Center. 
 
The first knowledge-based system "shell" used was a version of EMYCIN with a graphic tracing interface that ran on the Xerox 
1100 Lisp machine. This system, developed at Teknowledge, was called KS300. Part of TEIRESIAS (Davis and Lenat, 1982), an 
early knowledge transfer tool, was embedded in this shell.  
 
TEIRESIAS in EMYCIN provided debugging help after an initial knowledge base had been entered. The system also provided an 
intelligent rule and attribute editor and an interviewing dialog to help the user construct an initial knowledge base. This 
combination provided an excellent rapid prototyping environment for structured selection problems that is still not equaled by 
most of today's knowledge-based system shells. Still, Associates using this environment faced problems that still challenge 
knowledge engineers: 
 
 

1. How should the knowledge base be structured; in EMYCIN terms, how should the context tree be structured? 
 
2. How should rules (or frames) be chained together to properly drive reasoning? 
 
3. When uncertain knowledge is needed, how can certainty factors be controlled to improve knowledge base performance? 
 
4. What are the variables (variously called attributes, traits, characteristics, parameters, concepts, and dimensions, or in 

EMYCIN, PARMS) that should be included in rules or frames? What are the potential values for these variables? Which 
ones are more important, and how does this affect the knowledge base structure and reasoning? 

 
Since 1) EMYCIN helped build a simple starting context tree, 2) rule chaining in initial systems tends to be shallow, and 3) issues 
about uncertain knowledge tend to be uncovered later in the knowledge engineering process, identifying and using variables for 
rules were the first real problems an Associate faced.  
 
Boose thought repertory grids might be effective in helping Associates identify variables for rules. If an initial conclusion or 
solution set could be provided, then triadic elicitation could be used to help an Associate's expert generate an initial list of 
variables and values. Once these variables were identified, they could be used to help build rules in KS300. This use of repertory 
grids and, later,  related methods, provided much of the technology push in 1983 and 1984. 
 
An attempt was made to resurrect the Architectural Profile System on the Center's VAX but the Fortran had a different "flavor" 
and many of the old Univac library modules had no corresponding modules on the VAX. In July, 1983, Boose started building a 
triadic elicitation system in Interlisp on the Xerox 1100 Lisp machine. Because of the advanced programming environment on this 
machine, a basic grid system was written in about a month. This system was called KAQ (for Knowledge AcQuisition; usually 
pronounced QUACK, or DUCK as it was dubbed by a colleague). KAQ was a substantial improvement over the Architectural 
Profile System. It included pop-up menus and windows, graphics with selectable objects, trait value ranges (from 1 to 5) as 
opposed to binary ratings, and allowed the recording of trait weights. A Wood Advisor was developed to test the system as it was 
being built; it used about 15 wood types and ten attributes. One of the Associates, Art Nagai, was building a database management 
system advisor using KS300 and had gotten stuck. This was the first "real" problem KAQ attacked. The system seemed to  
perform reasonably well and offered Nagai new insights that he applied to his advisor. A series of demonstrations was given to 
colleagues, Associates, and frequent visitors who toured the Center.1 

                                                           
1Frequent demonstrations were, and still are, a way of life at the Center. We estimate that we have given over 300 demonstrations of KAQ, ETS, NeoETS, and Aquinas in the past six 
years. These demonstrations and use of the tools by Associates and others provide valuable feedback for new applications, increased utility, system limitations to be overcome, and 
improvements to the user interface. 



 
In September 1983, KAQ contained the following features (tools or features are listed with bullets; uses and advantages of the tool 
are shown in italics): 
 

o  Solution listing 
Identify potential solutions to the problem 

o  Triadic comparison of solutions 
Identify important discriminating traits (variables) for rules   

o  Ratings and trait weightings (1-5) 
Get judgments; show operational view of traits based on concrete solution objects (elements) 
Elicit relative importance of traits 

o  Graphic editors- labels, ratings, addition, deletion 
Easily change information associated with grid 

 
At this point, an interesting collection of articles was found describing tools and methods for extending repertory grid analysis 
(Shaw, 1981). Boose began applying ideas from some of the tools, notably ENTAIL (Gaines and Shaw, 1981) and DYAD (Keen 
and Bell, 1981).  
 
The article including ENTAIL sketched a method that used fuzzy logic for discovering entailments between values of the traits 
(we later came to call these entailments implications). These implications showed logical generalizations, using the grid data as a 
sample set. An algorithm was implemented based on ENTAIL that added graphic output to KAQ to show networks of 
implications. Experts using KAQ could agree or disagree with these generalizations. They were often surprised by implications 
that they subsequently realized were true. These could give users new insights about their problems by transforming the 
knowledge and changing the way it was viewed. This idea became an important aspect of future work as more analysis tools were 
added.  
 
When experts disagreed with implications, methods were established for reviewing the ratings in the grid for errors, adding 
"exception" solutions to the grid to make the offending implications disappear, and using laddering to check the consistency of use 
of the traits across all the solutions (Boose, 1984, 1985, 1986a). These analyses were first carried out manually; later they were 
implemented in ETS. Implication generation and review were the first analysis tools for debugging the information in repertory 
grids. Implicit in the point of view that led to their development was that grid data would be used for problem-solving - a very 
different use than the one originally intended by Kelly. 
 
Implications also proved useful for identifying knowledge at different levels of abstraction. They could, for example, point out 
"part of," "kind of," or subsumption relations. Implications could also show the relative independence of traits (the ENTAIL 
algorithm produced an entailment strength from 0.0 to 1.0). For some applications, it is important to make traits in rules as 
independent as possible; this technique provided a measure of trait independence. 
 
Hinkle, one of Kelly's students, had used other interviewing methods to generate implications (Hinkle, 1965). He analyzed these 
implications for patterns that he termed parallel, reciprocal, orthogonal, and ambiguous. These patterns could point out 
inconsistency, ambiguity, and equivalence among constructs. This pattern analysis was implemented in KAQ (Boose, 1986a).  
 
DYAD used an incremental interviewing method to develop a grid. This would be useful when an expert could not readily list a 
possible conclusion set for a problem, so it was also implemented in KAQ (Boose, 1986a). Another article mentioned the use of 
ratings N (for neither pole applies) and B (for both poles apply). Situations often arose in which both of these ratings would be 
useful, typically when an element was outside a construct's range of convenience, so this feature was also added to KAQ. 
 
In summary, by early October 1983, the following features had been added to KAQ: 
 

o  Implication analysis (fuzzy set generalization) 
Show trait value relationships at higher level of abstraction 
Summarize grid information 
Note "problems" and fix manually (bad ratings, exceptions, consistency) 
Provide another view of data 
Measure trait independence  

o  Implication Analysis and Examination 
Agreement 

Is it obvious? 
Is it new to the expert? 

Disagreement 
Are ratings correct? 
Is there an exception? 
Are traits being used consistently? 



o  Hinkle's implication analysis  
Point out relationships, especially problems (ambiguities and equivalences) 

o  DYAD dialog (incremental interviewing) 
Expand grid with important solutions and traits 
Use if expert has no initial set of solutions 

o  N (neither pole applies) and B (both poles apply) ratings 
Note when a trait does not apply comfortably to a particular solution 

 
Did all of this help knowledge engineers? Art Nagai, for example, claimed that KAQ gave him significant help for advancing the 
Database Management System Advisor. Others who used KAQ said they received insights that helped them start prototyping or 
enhancing projects using KS300.  
 
Other typical applications from this period include a jet engine diagnosis aid, a communication network bug analyzer, and a 
Seattle Japanese restaurant advisor. Most of the advantages and disadvantages of repertory grid methodology were uncovered in 
the next few months as KAQ was iteratively changed and improved. These are discussed below. 
 
 

4. ETS: EMBEDDED REASONING AND INTEGRATED ANALYSIS 
 

In October 1983 KAQ was renamed the Expertise Transfer System, ETS (paying homage to Davis, who coined the term "expertise 
transfer" in his thesis on TEIRESIAS).  
 
Boose realized that KS300 rules could be generated automatically from implications. In an implication, a value or "pole" of a trait 
implies another value with a certain strength. By eliciting an additional piece of information from the expert (the "concept" or 
"scale" name for each trait), ETS could transform an implication directly into a KS300 rule: 
 

Implication: MORE-EXPENSIVE  implies  FARTHER-AWAY (strength) 
 
KS300 rule: If  COST  =  MORE-EXPENSIVE  
   Then  DISTANCE  =  FARTHER-AWAY (CF) 

 
At first the fuzzy implication strength (from 0.0 to 1.0) was simply mapped directly onto KS300's certainty factor scale (from -1.0 
to 1.0). Later, other methods (described below) were tried. 
 
These rules pointed out relationships between traits, but another kind of rule, one that related values of traits to specific solutions, 
was needed. It turned out to be easy to generate these kinds of rules, too. For example, if the solution PARIS was rated 5 on the 
trait DISTANCE (CLOSER (1) / FARTHER-AWAY (5)), then the following rule could be generated: 
 
   If  DISTANCE  =  FARTHER-AWAY 
   Then  SOLUTION  =  PARIS  (CF) 
 
Another rule could also be generated: 
 
   If  DISTANCE  =  CLOSER 
   Then  SOLUTION  =  PARIS  (-CF) 
 
where the certainty factor (CF) is negative. Initially, both kinds of rules were generated internally in ETS in a simple frame format.  
Then several KS300 knowledge base files were examined to discover how rules, parameters, and control information were 
represented. In several days ETS was generating its first knowledge bases that could be loaded directly into KS300. 
 
Many ad hoc methods for generating certainty factors were tried. The algorithm would be changed, ETS would generate a rule 
base for KS300, the rule base would be loaded, and test cases would be run in KS300 to see how well the results fit the expert's 
expectations. Art Nagai's patience as a database expert was invaluable. Eventually, an algorithm was used that employed the 
weight of the trait (assigned by the expert in ETS) and the relative strength of the rating (a rating of 5, for example, was stronger 
than a rating of 4). It could compute a maximum certainty factor based on the number of rules that were generated (Boose, 1986a). 
Although we did not have the resources to perform a formal study, KAQ knowledge bases loaded in KS300 produced reasonable 
results for several applications by several experts. The algorithm continued to receive minor changes until it was replaced in 1985 
in NeoETS. 
 
The use of rules generated from implications in KS300 produced interesting results. KS300 backchained on the rules to find the 
most general or controlling implications and asked about these first. Answering one question during a consultation could thus 
provide values for several traits, in some cases dramatically reducing the number of questions KS300 needed to ask. Sometimes 



this could cause problems, since the expert didn't always agree with all the implications ETS produced; the inclusion of such rules 
was made optional. 
 
ETS helped people develop prototypes very quickly:  
 

o  Experts found it easy to interact directly with the tool. In fact, almost all the experts who used KAQ and ETS wanted to 
come back and continue using it. The interface and underlying methodology were straightforward and transparent. 
Knowledge was entered in the expert's vocabulary. The analysis tools offered experts insights that they found interesting 
and surprising. The use of these tools at the beginning of a project seemed to short-circuit typical problems brought about 
by manual interviewing (expert insecurity, fear of exposing problem-solving information to others, and anxiety caused by 
not knowing what the process was all about). This general enthusiasm of experts for using KAQ and ETS was probably 
one of the most important factors in their success. 

 
o  People didn't have to be experts to use ETS. People used ETS to help select workstations, classify personnel, buy cars, and 

improve their golf swings. ETS seemed to apply to any problem with a relatively small number of potential solutions. 
Even if the resulting consultation system wasn't perfect, ETS helped users derive insights from analysis tool use and 
helped them think about their problems in a structured manner. 

 
o  Knowledge engineers who watched experts use KAQ and ETS and examined system transcripts could quickly learn 

vocabulary, see potential solutions, learn the appropriate level of granularity for solving a problem, view the relative 
importance of initial traits, test a working prototype, and ask the expert further questions about the problem in a much 
more directed manner than was usually possible using regular manual interviewing methods. In fact, ETS was of great 
help to most Associates, since they generally had no background in formal interviewing techniques (as is still true for 
most knowledge engineers today).  

 
o  Rapid prototypes could be built in an hour or less. It usually took an expert a half hour or so to build an initial grid 

(typically from 6-by-6 to 10-by-10) and examine the implications. Then it took about ten minutes to generate rules, stop 
ETS, start KS300, and load the knowledge base. This minor delay was dealt with later by building a reasoning engine in 
ETS; see below. The expert could then build and save test cases to see how well the knowledge base performed. 
Problems were dealt with by reloading ETS, adding to or modifying information in the grid, and then retesting. This rapid 
prototyping capability led to the use of ETS for feasibility analysis of many different potential expert system projects. It 
was relatively easy to invite an expert over to the Center for a few hours and try out several project ideas. 

 
o  It was much easier to maintain information in a grid than in rules. Grids were a more compact form of representation and 

were easier to comprehend than a set of rules. 
 
o  Knowledge bases produced by ETS could be modified or combined with other knowledge base information in KS300; ETS 

could thus produce components of larger systems. 
 
o  ETS was a good training tool. It was easy to explain basic expert system concepts by example - ETS produced rules 

automatically and KS300 could run consultations. Managers and others involved in the potential project could see the 
working prototype and quickly get an idea about knowledge-based system technology and its problem-solving potential 
for a particular project. 

 
We had also improved repertory grid methodology: 
 

o  In ETS, repertory grids were operational. Information contained in grids could be used by an inference engine to solve 
problems and help make decisions. The link to KS300 provided dynamic analysis, whereas previous methods provided 
only static analysis. 

 
o  In ETS grids had been applied practically to knowledge-based systems; grid techniques had been successfully applied to 

other areas such as training and market analysis. 
 
o  Having several kinds of analysis tools together in one system also offered significant advantages. Users could 

systematically transform grid information from one form to another to learn about its strengths and limits and measure 
different aspects of its problem-solving power. 

 
There were, however, significant limitations to the methodology and its implementation in KAQ and ETS (Boose, 1984, 1985, 
1986a). Some of these difficulties have been overcome or reduced in our subsequent work. 
 

o  The method seemed to be limited to analysis problems - problems for which the solutions could be enumerated 
comfortably.  Synthesis problems, such as configuration, scheduling, and design for which solutions are typically built up 
from component parts, were difficult to address using grids. It also seemed difficult to use grid methods to elicit causal, 



procedural, or strategic knowledge. Often this kind of knowledge seemed necessary for controlling reasoning in complex 
problems. 

 
o  There was a limit to how much information could be comfortably represented in a single rating grid. One application 

included a 38-by-35 grid, but it was hard for the expert to use and manage, partly because some of the analysis tools took 
too long and partly because it was difficult to comprehend that much information at once. Some method was needed to 
decompose large grids into manageable, related subgrids. 

 
o  Representing solutions at different levels of abstraction led to trouble when using analysis tools and building rapid 

prototypes. This became clear as one of the first Associates tried to build a jet engine diagnostic aid. Parts and systems 
were listed as potential solutions (problem areas), and diagnostic symptoms were generated through triadic comparison. 
Unfortunately, solutions such as "spark plug" and "electrical system" both appeared in the grid. A spark plug was a 
component of the electrical system. What was really needed was a grid that represented high-level subsystems, individual 
subgrids that represented components of those subsystems, and so on. In this case, the "leaf" grids would contain field-
replaceable components. If such a hierarchy of grids existed, traits on the top-level grid would be symptoms of problems 
in overall subsystems, symptoms one level down would relate to components of subsystems, and so on. This type of 
problem and the problem of large grids were the major motivations for building hierarchies in NeoETS, discussed below. 

 
o  Many types of problem-solving information did not fit comfortably into the types of traits used by ETS and other repertory 

grid tools (typically, ordinal traits with ranges from 1 to 5). In the Database Management System Advisor, for example, 
one important type of trait related database management system to hardware. Nagai needed several bipolar ordinal traits 
to represent this in ETS, such as "runs on VAX / doesn't run on VAX," "runs on IBM / doesn't run on IBM," "runs on 
CDC / doesn't run on CDC," and so on. It would have been much more convenient to combine all this information into 
one nominal trait, "computer type," whose values could be VAX, IBM, CDC, and so on. Then these actual values, or sets 
of these values, could appear in the grid, rather than numbers. This type of problem was a matter of convenience; it was 
possible but awkward to represent such information in ETS. Another problem with ordinal ETS rating scales was one of 
precision. In a composite parts advisor, an Associate wanted to relate critical temperatures in a manufacturing process to 
potential solutions. Two problems arose. There were more than five critical temperatures (where trait ranges were only 
from 1 to 5), so the Associate was forced to use multiple traits to represent these temperatures ("critical point A / not 
critical point A," "critical point B / not critical point B," and so on). More critically, the Associate needed to represent the 
exact temperature, not an ordinal representation of the temperature. These types of problems led to the introduction of 
nominal, interval, and ratio traits in NeoETS, as well as the ability to adjust the ranges of the traits. 

 
o  Consultations produced by ETS allowed users to enter only soft constraints. They could specify preferences about the 

solution set but could not indicate that a given trait should control a situation absolutely. For example, the user could 
specify that cost should be low on an ordinal scale (a preference of 1 on a LOW-COST (1) / HIGH-COST (5) trait) but 
high cost solutions might still be selected. The user might not be able to spend more than a certain amount of money, but 
this could not be specified. The expert needed a mechanism for adding these hard constraints; such a mechanism was 
added in Aquinas (described below). Interactions between traits couldn't be specified either, where knowing the value of 
one trait limited the values of another. For instance, knowing that cost should be low might imply other features of the 
solutions. This information couldn't be represented in an ETS grid, but, again, was later implemented in Aquinas. 

 
o  More tools were needed to help revise an initial rating grid to increase its problem-solving performance. More static 

analysis was needed to explore the grid's potential power, and a feedback link was needed from the inference engine so 
that dynamic analysis tools could directly examine performance results from real problems. Some of these problems, 
mentioned below, were addressed in Aquinas. 

 
o  Kelly had pointed out problems in the psychotherapeutic domain that related directly to the use of grids for problem-

solving. In particular, it was hard to tell whether or not the elements and constructs sufficiently represented the necessary 
information. Issues of necessity and sufficiency continue to plague knowledge engineers as they seek to verify and 
validate knowledge-based systems, no matter what tools they use. We have begun to add testing and performance 
measurement features to Aquinas, but, clearly, this will remain a difficult problem. 

 
Before the end of 1983, other improvements were made to ETS. ETS was trained to make knowledge bases for OPS5 running on 
our Center's VAX. This provided an inexpensive, easily accessible environment for running consultation systems produced by 
ETS. Further triadic elicitation and automated implication reviewing were also implemented. ETS then contained the following 
additional features: 
 

o  Automatic rule generation 
Operationalize information in a repertory grid 

o  Rules produced  in KS300 format  
Allow  dynamic testing of grid knowledge - expert can agree or disagree with conclusions and improve knowledge 
Significantly expand repertory grid methods 



Implication rules in KS300 cut down number of questions asked 
Potentially deliver knowledge bases produced by ETS on non-Lisp machine 
Expand sphere of usefulness 

o  Manual test review 
Provide mechanical methods for improving behavior 
Measure performance 

o  Rules produced in OPS5 format 
Provide VAX-based delivery of knowledge base produced by ETS 
Provide delivery in multi-user time sharing environment 

o  Further triads 
Further improve knowledge base from "random" triads  

o  Automated implication review  
 
In November 1983, Boose gave a talk to the local Puget Sound Association for Artificial Intelligence at the University of 
Washington. This was the first time ETS had been presented outside Boeing. He also started a paper that was presented next 
summer at the American Association of Artificial Intelligence conference in Austin (AAAI-84; Boose, 1984). 
 
Early in 1984, an internal inference engine was implemented in ETS. This relieved the annoyance of stopping ETS and starting 
KS300 on the Lisp machine. It also allowed the addition of debugging aids such as consultation tracing and rank-order 
comparison. Experts would enter their expected results and ETS would compare the list with the actual results using a simple rank 
correlation measure. Thus, the performance of knowledge in the rating grid could be measured, and experts could see whether 
changes made to a grid resulted in overall performance improvement or degradation. New interesting triads could also be formed 
based on the worst misplaced solution in the set (Boose, 1986a). 
 
We also implemented laddering and trained ETS to make knowledge bases for several other knowledge-based systems shells that 
were in use at the Center. This resulted in the following additional capabilities: 
 

o  Embedded testing using internal inference engine 
Eliminate step of making KS300 knowledge base, switching partitions, and loading  
Allow subsequent internal test reviewing 

o  Internal test review for rank order performance measurement and "worst misplaced solution" 
Allow problem-directed debugging 

o  Laddering 
Support ambiguity analysis in implication review 
Further elicit more general or more specific traits 

o  Rules produced for LOOPS knowledge bases 
o  Rules produced for S.1 and M.1 knowledge bases 
o  Rules produced for TI Personal Consultant knowledge bases 

Support delivery in other hardware and software environments 
 
In the spring of 1984, Boose visited William Clancey at Stanford. They discussed ETS and Clancey's forthcoming paper on 
heuristic classification. Information from this discussion later formed the basis of the reasoning structure in Aquinas. 
 
ETS was used in the first knowledge engineering course taught at the Center. A user's manual was produced for knowledge 
engineers and experts. ETS was installed on several other Xerox Lisp machines as Associates graduated and returned to their 
home groups. A non graphic version of ETS, running under ISI Interlisp, was also ported to the Center's VAX. 
 
In September, 1984, Boose received a letter from Mildred Shaw inviting him to visit her and Brian Gaines at York University in 
Toronto and to present a paper at the Personal Construct Congress in Cambridge, England, in 1985. She had seen the ETS paper 
in the AAAI-84 proceedings and was interested in seeing ETS and talking with us. Boose and a colleague, Ray Allis, visited 
Toronto in October and gave several talks and demonstrations. Shaw and Gaines showed them PLANET, an Apple II-based 
repertory grid tool embodying most of the features they had written about. The discussions were very fruitful, and Boose, Gaines, 
and Shaw formed a relationship that led to, among other things, a series of knowledge acquisition workshops (discussed below). 
 
PLANET had several useful analysis tools that Boose implemented in ETS. One of these was similarity analysis and review, where 
rows and columns in the grid were measured for similarity and difference. This was a powerful static analysis technique when 
applied to problem-solving information in ETS. For example, if two solutions were highly similar (the ratings in their columns 
matched significantly), then the inference engine would not be able to discriminate between them very well. The review 
mechanism allowed the expert to add traits in a directed manner to help solve these problems. This same process, when applied to 
rows, could help find redundant or highly dependent traits. 
 
Another item contained in PLANET was a cluster analysis tool, FOCUS. A similar tool was implemented later in NeoETS to help 
experts decompose large grids into hierarchies. 



 
It was common wisdom that only one expert should be used to build an initial expert system, but many Associates' problems 
demanded expertise from multiple sources. Sometimes knowledge about similar solutions was needed from more than one expert 
(multiple experts in the same domain); sometimes different areas of expertise from several experts needed to be linked together 
(multiple experts in different domains). One problem with combining knowledge from different experts was that information 
tended to be "averaged" across experts to reduce conflict, which results in the loss of special case-information. How could 
knowledge be represented and used from multiple sources? 
 
In the fall of 1984, we combined expertise from multiple experts using ETS (Boose, 1986b). Expertise was first elicited 
individually from experts. Then ETS produced S.1 knowledge bases from the individual experts' grids, and the knowledge bases 
were manually pasted together and loaded in S.1. Each rule was produced with an additional screening clause that recorded which 
expert had contributed the knowledge. The resulting consultation system first asked the user for the set of experts to be considered; 
the user could weight experts by applying certainty factors to the response. Then S.1 backchained as usual to produce consensus 
consultation results. An S.1 mechanism was added to measure each expert's distance from the consensus, and the "most 
dissenting" expert's opinion was then displayed side by side with the consensus. This allowed the user  to see a full range of 
opinion, not just the consensus average. Experts could also use their own sets of solutions and traits; S.1 would ask about each 
necessary trait during backchaining. To the extent that experts used similar vocabulary and problem-solving models, the user 
could  more easily compare their individual results. 
 
This method combined a delphi-like approach to gathering information independently with the rapid elicitation capabilities of 
repertory grids. Since each expert's knowledge was preserved, no special-case information was lost. Information could be gathered 
rapidly from a large group of experts. Later, we implemented this method directly in NeoETS (discussed below), along with 
analysis tools for comparing grids from different experts.This capability led to subsequent applications of NeoETS and Aquinas 
for group consensus and group decision making. 
 
By the end of 1984, then, ETS also contained these features: 
 

o  Similarity analysis and review (from PLANET) 
Measure static problem-solving potential of a grid  
Provide specific help for increasing discriminating power of grid 
Provide method for adding new solutions and traits in a directed manner 
Measure trait subsumption and independence  

o  Multiple expertise knowledge bases built in S.1 and OPS5 
2200-rule AI tool advisor produced for OPS5/VMS 

Combine different sources on same or different topics 
 
In December 1984, Gaines and Shaw visited our Center and gave a colloquium on their views of knowledge engineering and 
personal construct methods. Plans were made for a knowledge engineering workshop at York University the following May. 
 
By the end of the year, ETS had been used to produce hundreds of prototype knowledge-based systems and had begun to receive 
wide publicity within the AI community. Some of these applications included an AI library advisor, aircraft fault identifier, 
airplane design flutter analyzer, automated numerical control cutter consultant, flight controls diagnostic aid, ATLAS structural 
analysis advisor, bond durability consultant, business computing needs advisor, business graphics package consultant, composite 
materials advisors, documentation update consultant, energy control system model evaluator, failure modes and effects analyzer, 
finish advisor for materials, flight mode manager, materials technology advisor, mental health diagnostic aid, microcomputer 
needs analysis, molded rubber seal advisor, office automation system advisor, organization development intervention consultant, 
PAN AIR software aids, portfolio management aid, programming bug finder, programming language advisor, propulsion system 
advisor, rivet selector, robotic system application advisor, software management consultant, software release advisor, technical 
sales and services consultant, velocity analysis advisor, wine advisor, and word processing system consultant. 
 

5. NEOETS: HIERARCHICAL REPERTORY GRIDS AND MULTIPLE DATA TYPES 
 

In January 1985, Boose taught a knowledge engineering course that was attended by a University of Washington psychology 
graduate student, Jeff Bradshaw. Already familiar with repertory grids, Bradshaw became interested in ETS and started working at 
the Center in the spring. Bradshaw contributed key ideas to NeoETS in the areas of knowledge representation and reasoning. 
 
By the fall of 1985, NeoETS had been born in response to many of the limitations of ETS, especially those related to large grids, 
problem decomposition, levels of abstraction, and multiple data types. In NeoETS, we attempted to augment repertory grids with 
new representations (hierarchies and multiple data types) and a fuller set of integrated analysis and reasoning tools. The most 
significant change was a de-emphasis of rule generation and an effort to deliver knowledge to end users within Aquinas.  
 
The internal structure of ETS was removed and replaced several times to produce a system that could handle multiple hierarchical 
repertory grids, multiple data types, new analysis tools, and an internal reasoning engine for these new structures. We began 



referring to NeoETS as a knowledge acquisition workbench. The additional complexity created new challenges for effective 
elicitation, analysis, and testing of knowledge. Features of NeoETS are documented in (Bradshaw and Boose, 1986). They 
include: 
 

o  New data structures  
Four hierarchies - solutions, traits, cases, and experts 

Allow for complexity, multiple levels of abstraction 
Handle multiple experts within one NeoETS knowledge structure 
Partition knowledge around specific subproblems (cases) 
Handle hierarchical relationships in any data type 

Four trait scale types - nominal, ordinal, interval, ratio 
Handle trade-offs between precision, convenience, conciseness, cost 

o  Reasoning engine based on the Analytic Hierarchy Process (Saaty, 1980) 
Serve as first attempt at reasoning with hierarchical structures 

o  Additional bridges produced for other shells (KEE; an internal C-based shell) 
 
In May, a knowledge engineering seminar was held at York University, and later a new article about ETS provided more detail on 
the methods and their implementations. Work was also started on a book that was published early in 1986 (Boose, 1986a).  
 
In the fall of 1985 we started a project with Seattle University's software engineering master's program that was to deliver a C-
based version of ETS in the spring of 1986. This project was successfully completed, and we have continued with follow-on 
projects each year to enhance the utility of this tool. Currently, many of the useful tools in the Lisp-based version of Aquinas have 
migrated to the C-based version. 
 
 

6. AQUINAS: A WORKBENCH FOR KNOWLEDGE BASE LIFE CYCLE SUPPORTAQUINAS 
DEVELOPMENT HISTORY 

 
Further developments of our workbench were aimed at handling knowledge base life cycle problems, the user interface, delivery 
of knowledge bases (and of the workbench itself), and integration with other tools and systems. 
 
 
1986 

 
Early in 1986, David Shema and Cathy Kitto joined our project. Shema worked initially at improving the user interface and Kitto 
began work on a dialog manager to help the user handle the growing complexity of the workbench (Kitto and Boose, 1987). 
Shema eventually started work on validation and verification methods, implementing a case storage and batch-replay mechanism 
that could be used to measure knowledge base performance and even automatically improve information in rating grids (Shema 
and Boose, 1988).  
 
The initial dialog manager was an expert system within Aquinas that used knowledge acquisition heuristics (about knowledge 
engineering, knowledge acquisition cycles in Aquinas, uses and limits of Aquinas tools, and idiosyncratic knowledge) and 
information about the current session and knowledge base complexity and completeness. Later, the dialog manager was expanded 
to help the user select an overall category for an application problem (Kitto and Boose, 1988). This would help the user decide 1) 
if Aquinas was appropriate for the problem and 2) what knowledge-based system tool might be useful. The dialog manager rank-
ordered appropriate potential tools to use in Aquinas at each interaction cycle and suggested several to the expert. The dialog 
manager was difficult to maintain, as other team members constantly changed tools and the information that led to tool choices 
became outdated.  
 
For reasons that should be apparent, we were unhappy with the name "NeoETS" and renamed the system Aquinas. From 1986 to 
the present, we added numerous additional tools and techniques (summarized in Boose, Shema, and Bradshaw, 1988); a few of the 
more interesting developments are mentioned here. 
 
Bradshaw, dissatisfied with the use of the Analytic Hierarchy Process for reasoning (Saaty, 1980), implemented an extended 
version of Clancey's heuristic classification model (Clancey, 1986) that included a maximum-entropy-based method for 
propagating uncertainty (Boose and Bradshaw, 1987). An important aspect of this method included techniques for performing 
inductive inference in sparse hierarchies of grid information. Bradshaw also implemented such useful features as a cluster analysis 
based on FOCUS and the ability to represent discrete probability distributions in the cells of a rating grid.  
 
Tools were developed, enhanced, or integrated to help experts structure information in hierarchies by noticing trait relationships 
and patterns in ratings (cluster analysis, laddering, trait value examination, Hinkle's pattern analysis, automatic or controlled 
inheritance, graphic cut and paste). Other tools were developed to analyze similarities and differences across groups of experts. 



Table completion and boundary analysis were developed to help check grids statically for consistency and completeness (Boose 
and Bradshaw, 1987). 
 
In November 1986, the first AAAI-sponsored knowledge acquisition workshop was held in Banff, Canada, co-chaired by Boose 
and Gaines. This was the first in a series of annual workshops in Banff and Europe that provided a unique forum for leading 
knowledge acquisition theoreticians and practitioners (Boose and Gaines, 1989). 
 
1987 

 
In early 1987, Bradshaw implemented a form of ID3 (Quinlan, 1988) in the inference engine. It performed a cost-benefit analysis 
on repertory grids that allowed the inference engine to order consultation questions dynamically in a best-first manner. 
 
Multiple expert capabilities mentioned above were added to the knowledge base structure and the inference engine. Users could 
select subsets of solutions and weight experts. Consultation results showed the consensus and the dissenting opinion. Tools for 
analyzing the differences and similarities between experts were added. 
 
Boose documented the large number of applications and problems that had put KAQ, ETS, NeoETS, and Aquinas through their 
paces and reviewed uses of Aquinas to elicit procedural and strategic knowledge (Boose, 1988a). He implemented an on line help 
mechanism and documented the growing number of knowledge acquisition tools and techniques exposed at the knowledge 
acquisition workshops (Boose, 1988b). 
 
Shema developed techniques for debugging knowledge bases and measuring knowledge base performance. Manual, directed, and 
automated methods were implemented in an effort to provide validation and verification tools for life-cycle support (Shema and 
Boose, 1988). Later trait sensitivity and solution stability analysis mechanisms were added. 
 
In 1987, Bradshaw started a new project combining ideas from decision analysis and knowledge-based systems (Howard and 
Matheson, 1984; Holtzman, 1989). This led to interesting theoretical work on integrating repertory grids with knowledge 
structures used in decision analysis, such as influence diagrams, a kind of Bayesian network (Bradshaw and Boose, 1988; 
Bradshaw, Boose, Covington, and Russo, 1989a,b). Kitto also started her own project using KNACK, a knowledge acquisition 
tool originally developed at Carnegie Mellon (Kitto, 1988; Klinker et al., 1989). 
 
1988 

 
In 1988, Shema implemented a constraint mechanism that allowed experts and users to represent trait interactions and hard 
constraints (Boose, Shema, and Bradshaw, 1988). He added a consultation spreadsheet mechanism that allowed users to easily 
reason about hypothetical situations by temporarily modifying grid ratings and weights and immediately seeing graphic 
consultation results. Another feature added by Shema was a link to a graphic database so that images could be shown and used 
during consultations. He has been instrumental in improving the user interface with graphic display and input tools and screen 
organization devices. 
 
More improvements were made to the internal reasoning engine. The algorithm was improved, and hooks were added so that 
experts and users could easily tailor certain steps in the inference process based on particular applications. 
 
Initial work was performed on capturing explanations from experts during knowledge elicitation and on keeping a history of 
knowledge base changes. We believe that explanations will be useful as an aid for knowledge base maintenance and for allowing 
end users to review the expert's justifications.  
 
Aquinas has long been used to "try out" different values of trait ratings, weights, and preferences to see how  the recommendations 
are affected.  Spreadsheet consultations were added in the Fall of 1988 which allow the experts or users to temporarily change 
values and observe how the consultation recommendations would vary. 
 
Work has been done to integrate Aquinas into other environments and tools. In the summer of 1988, Envos, a Xerox spin-off 
company, announced that the entire Xerox-based programming environment was available on Sun workstations. Now, the full 
version of Aquinas is available to anyone in Boeing with a Sun workstation. The C-based version of Aquinas continues to be 
moved to different workstations. A recent version, MacQuinas, which runs on Macintosh computers, is being integrated with 
MacXotl (the Mac II version of Axotl, a knowledge-based decision analysis workbench implemented in SmallTalk-80) within an 
environment named "folie a deux" (Bradshaw, Boose, Covington, and Russo, 1989a,b). This will allow us to combine repertory 
grid and decision analysis techniques in one framework. 
 
Many of the limitations of repertory grid methods in general and our implementations in particular have, at least in part, been 
overcome.  However, several major problems are yet to be solved. These are discussed in the next section. 
 
 



7. THE FUTURE: EMBEDDED KNOWLEDGE, SYNTHESIS PROBLEMS, AND LIFE CYCLE 
SUPPORT 

 
Aquinas and Other Knowledge Acquisition Tools 

 
Most knowledge acquisition tools derive their power from application domain knowledge. Figure 1 shows representative 
knowledge acquisition tools plotted on two axes: domain independence and problem type (discussed in detail in Boose, 1988b). 
Tools such as FIS and STUDENT are built for single-application systems. They are successful because their developers could 
embed very specific knowledge about the domain application, but they are difficult to generalize to new applications. Tools such 
as MOLE, MDIS, TKAW, and SALT derive power from knowing about patterns of knowledge types and problem-solving 
methods in certain classes of domains. Although they can be generalized within their target subdomains, developers find it difficult 
to generalize them to relatively unconnected domains. 
 
On the other hand, tools like KSS0 and Aquinas have no embedded domain knowledge. They are very general but lack domain 
power. 
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Figure 1. Knowledge acquisition tools plotted on two axes: domain independence and problem type. 

 
 
One approach to improving Aquinas would be to develop domain knowledge templates that could help an expert start building a 
knowledge base (Bradshaw, Boose, Covington, and Russo, 1989b). One obvious area would be diagnostic problems where much 
is known about how to link symptoms, tests, costs of tests, and hypotheses. Loading such domain knowledge in Aquinas would 
significantly expand its problem-solving power. 
 
Synthesis Problems 
 
As can be seen in Figure 1, few knowledge acquisition tools have been successful at handling synthesis problems, and those that 
do are domain specific (Boose, 1988b).  
 
We are trying to expand Aquinas to be able to handle simple synthesis problems such as configuration and process monitoring. 
For example, we are allowing users to put arbitrary computations in the cells of repertory grids in AQUINAS (spreadsheet-like 
computations, database access calls, functions that sample sensors) or to call specialized tools for alternatives generation and 
constraint satisfaction (Bradshaw, Boose, Covington, and Russo, 1989a; Shema, Covington, Boose, and Bradshaw, 1989). 
 
Eventually, we hope to blend techniques from other tools (such as MDIS, Antonelli, 1983, and SALT, Marcus et al., 1985; 
Marcus, 1987)  to help elicit knowledge for aspects of design problems such as: 
 

 
o   Acquisition of causal models and design constraints. 
o   Selecting alternative design concepts based on competing criteria such as reliability, maintainability, cost, and 

manufacturability. 



o   Acquiring human expertise in validation and verification of designs. 
o   Acquiring knowledge for design evaluation and change recommendation. 
o   Acquiring knowledge for document generation and evaluation. 
o   Capturing historical data in a "corporate memory" database to help solve future design problems. 

 
We also intend to continue work on eliciting  strategic and procedure knowledge to help control complex problems. While the 
dialog manager was successful in providing help to people learning Aquinas (Kitto and Boose, 1987), the rule-based format of its 
knowledge base was difficult to maintain. We are currently evaluating the use of repertory grids (Boose, 1988) and extended 
AND-OR graph representations (Bradshaw, Boose, Covington, and Russo, 1989a,b) to represent strategic and procedural 
knowledge. 
 

Life Cycle Support 
 

Figure 2 illustrates our intentions to increase Aquinas' knowledge acquisition power by embedding domain-specific knowledge 
and by augmenting Aquinas structures to handle synthesis problems. 
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Figure 2. In the future we intend to expand Aquinas's knowledge acquisition power by embedding domain-specific 

knowledge and by augmenting Aquinas structures to handle synthesis problems. 
 
In addition, we will attempt to support more of the knowledge-based system life cycle. We will concentrate on the areas of 
validation, verification, and maintenance of knowledge (Baum, Shema, and Boose, 1989).  
 
In the near future, we will continue to build on Shema's work to measure and improve knowledge base performance, particularly in 
managing long-term maintenance of knowledge bases built by multiple experts. We will explore tools that tailor reports for 
maintainers after changes are made and perform sensitivity analyses to identify critical areas of knowledge. We may also 
implement TEIRESIAS-like features to model existing knowledge and identify inconsistencies when changes are made.   
 
We will also explore tools for text analysis (Gaines, 1987) and improve our earlier work on explanation capture and playback 
mechanisms. 
 
In the long term, we hope to provide full delivery facilities, including knowledge base partitioning and protection,and further 
facilities for eliciting and analyzing knowledge from multiple experts (elicit knowledge in parallel (on line) from several experts, 
analyze subsumption and overlap, support on line structured negotiation, perform intelligent knowledge base merging, discover 
the most important aspects of individual knowledge (special cases), and elicit and merge knowledge dynamically). 
 
We are continuing our relationship with Gaines and Shaw, who are now at the Knowledge Science Institute at the University of 
Calgary, Alberta, Canada. Gaines and Boose have edited special knowledge acquisition issues of the International Journal of 
Man-Machine Studies, and are co-editing the Knowledge-Based System book series series for Academic Press, starting a new 
journal, Knowledge Acquisition: An International Journal, from Academic Press, and continuing to co-chair annual knowledge 
acquisition workshops in North America, Europe, and Japan. 
 
 



8. CONCLUSION 
 

Two major forces brought about the development of our knowledge acquisition tools : technology push and application pull. Ideas 
from many areas were gradually integrated to meet the growing demands of knowledge-based systems problems at The Boeing 
Company. This paper briefly traced the history of this development, and the sources of many of our ideas, described features and 
the reasons that they were added, and illustrated typical applications at each stage of evolution.  
 
Building useful knowledge acquisition tools continues to provide exciting challenges to make knowledge-based systems and 
knowledge-based decision aids ever more practical. ETS and Aquinas have contributed significantly to the use of knowledge-
based systems within The Boeing Company. 
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