
DAML-based Policy Enforcement for Semantic Data 
Transformation and Filtering in Multi-agent Systems 

Niranjan Suri, Jeffrey Bradshaw, Mark Burstein, Andrzej Uszok, Brett Benyo, Maggie Breedy, 
Marco Carvalho, David Diller, Renia Jeffers, Matt Johnson, Shri Kulkarni, James Lott 

 

Institute for Human & Machine Cognition 
University of West Florida 

40 S. Alcaniz St., Pensacola, FL 32501 
++1-850-202-4462 

{nsuri,jbradshaw,auszok,mbreedy, 
mcarvalho,rjeffers,mjohnson, 
skulkarni,jlott}@ai.uwf.edu 

 
BBN Technologies 

10 Moulton St., Cambridge, MA 02138 
++1-617-873-3861 

{burstein,bbenyo,ddiller}@bbn.com

 
ABSTRACT 
This paper describes an approach to runtime policy-based control 
over information exchange that allows a far more fine-grained 
control of these dynamically discovered agent interactions. The 
DARPA Agent Markup Language (DAML) is used to represent 
policies that may either filter messages based on their semantic 
content or transform the messages to make them suitable to be 
released. Policy definition, management, and enforcement are 
realized as part of the KAoS architecture. The solutions 
presented have been tested in the Coalition Agents Experiment 
(CoAX) - an experiment involving coalition military operations. 

Keywords 
Policies, Policy-based Control, Information Release Policies, 
Semantic Filtering, Data Transformation Policies, Coalition 
Operations, CoAX, CoABS Grid, DAML, DAML-S, KAoS, 
Nomads. 

1. INTRODUCTION 
Software agents have been proposed as a solution to integrate 
existing heterogeneous and stovepiped information systems. 
Agent and service description mechanisms, discovery and 
matchmaking services, and agent communication languages all 
contribute to agents achieving ad-hoc and dynamic 
interoperability at runtime as opposed to at design time. 
Mechanisms such as DAML services and the CoABS Grid make 
it possible for agents to dynamically interoperate thereby 
increasing their effectiveness. These capabilities extend agent 
autonomy to encompass communication and information 
exchange. However, in sensitive or critical application areas such 
as the military or competitive business environments involving 
proprietary information this kind of transparent interoperability 
raises concerns about the nature of the information being 
exchanged. The dynamic and autonomous nature of this process 
complicates the task of system designers who wish to maintain 
control over the flow of information to and from their agents. 

This paper describes an approach to provide runtime policy-
based control over information exchange. Two different control 
mechanisms are discussed: semantic (content-based) filtering of 

messages as well as in-stream transformation of messages. Both 
of these control mechanisms are driven by policies at run-time. 
These mechanisms allow a far more fine-grained control over 
dynamic and autonomous agent interactions than a suite of 
policies created at design time, before all possible interactions 
are known. With such an approach, we hope to increase the 
confidence with which system designers will adopt agent-based 
approaches to building dynamic, heterogeneous systems. 

Central to our approach is the KAoS architecture which provides 
a set of services for policy-based control over agent behavior. 
KAoS provides a framework for policy definition, management, 
distribution, and enforcement. The capabilities described in this 
paper have been realized as extensions within the KAoS 
framework which uses the DARPA Agent Markup Language 
(DAML) is used to represent policies. Our current 
implementation operates on top of the DARPA Control of Agent-
based Systems (CoABS) Grid, which provides agent registration, 
lookup, and messaging services. However, the solution is 
portable to other platforms that provide the same basic services. 
Finally, the Nomads mobile agent system and the Flexible Data 
Feeds Framework (FlexFeed) are used to realize the enforcement 
mechanisms. 

The rest of the paper is organized as follows. Section two 
provides an overview of the CoABS Grid, DAML, KAoS, 
Nomads, and FlexFeed components. Section three describes the 
Coalition Agents Experiment (CoAX) scenario that motivated the 
development of these capabilities. Section four presents the 
architecture of KAoS. Section five describes the implementation 
of the semantic filtering capability. Section six describes the 
implementation of the dynamic transformation capability. 
Finally, section seven concludes with a summary and discusses 
future work. 

2. COMPONENTS OVERVIEW 
2.1 CoABS Grid 
The DARPA CoABS Grid is an integration platform designed to 
support runtime interoperability of software agent systems [9,12]. 
The CoABS Grid was developed under the auspices of the 



DARPA Control of Agent-based Systems program. It is designed 
to be an agent-friendly layer on top of the Jini framework [14]. 
The CoABS Grid provides, among other capabilities, agent 
registration, lookup, and messaging. 

Agent registration is handled by placing a descriptor for an agent 
along with a proxy for that agent into the Jini Lookup Service 
(LUS). Agent lookup is achieved by passing a partial descriptor 
to the Grid which then returns a set of proxies for the matching 
agents. Once a proxy to an agent has been retrieved, a message 
may be sent to the agent by invoking a method on the target 
agent’s proxy. 

The Grid also provides a logging service to keep track of the 
message traffic and a GUI administration tool to help configure 
and startup the Grid services, visualize registered agents, and 
perform other kinds of monitoring operations. 

2.2 DAML 
The DARPA Agent Markup Language (DAML) is a semantic 
representation language jointly developed by the DARPA DAML 
program and the World Wide Web Consortium (W3C). Built on 
top of RDF, a description language developed by W3C and its 
contributing members, DAML provides a capability to describe 
classes, properties, and descriptions built using those in a syntax 
based on XML and SGML. A key notion in RDF and DAML is 
that there is a universal namespace built on URI’s, so that 
ontologies developed at different locations and published at 
different locations on the web can refer to each other. DAML 
enhances RDF by providing a formal semantics, and includes 
additional constructs for indicating such things as the 
equivalence or disjointness of different classes, key concepts 
required to do useful classification inferences. Within the DAML 
program, a group of researchers has developed DAML-S [2,3], an 
ontology for describing web and agent services. This ontology, 
consisting of separate parts for service profiles (advertising 
services), service process models (including semantic 
descriptions of what are essentially messaging APIs), and service 
groundings, that describe how atomic processes are to be mapped 
into various messaging formats such as provided by SOAP, 
HTML, the CoABS Grid, and so forth. We make extensive use of 
both DAML and DAML-S in the examples described in this 
paper. 

2.3 KAoS 
KAoS is a collection of componentized agent services compatible 
with several popular agent frameworks, including Nomads 
[15,16], the DARPA CoABS Grid [9,12], the DARPA 
ALP/Ultra*Log Cougaar framework (http://www.cougaar.net), 
CORBA (http://www.omg.org), and Voyager 
(http://www.recursionsw.com/osi.asp). The adaptability of KAoS 
is due in large part to its pluggable infrastructure based on Sun's 
Java Agent Services (JAS) (http://www.java-agent.org). For a full 
description of KAoS, the reader is referred to [5,6,7]. 

There are two key KAoS services relevant to the effort described 
here: policy services and domain services. 

Policy services are used to define, manage, and enforce 
constraints assuring coherent, safe, effective, and natural 
interaction among teams of humans and agents. Knowledge is 
represented declaratively in DAML ontologies. The current 

version of the KAoS Policy Ontologies (KPO) defines basic 
ontologies for groups, actors, actions, places, messages, various 
entities related to actions (e.g., computing resources), and 
policies. We have extended these ontologies to represent simple 
atomic Java permissions, as well as more complex Nomads, and 
KAoS policy constructs. New extensions to the ontologies are 
continually being developed to represent domain- and 
application-specific information. 

Domain services are used to facilitate the structuring of agents 
into complex organizational structures, administrative groups, 
and dynamic task-oriented teams that may span many hosts, 
platforms, and locations. Domains also provide a common point 
of administration and policy enforcement. Through various 
DAML property restrictions, a given policy can be variously 
scoped, for example, either to individual agents, to agents of a 
given class, to agents belonging to intensionally- or 
extensionally-defined domains or teams, or to agents running in a 
given physical place or computational environment (e.g., host, 
VM). 

2.4 Nomads 
Nomads is a mobile agent system for Java-based agents. Nomads 
provides two implementations: Oasis and Spring. Oasis 
incorporates a custom Java-compatible Virtual Machine (named 
Aroma) whereas Spring is a pure Java implementation. The 
Aroma VM is a clean-room VM designed to provide the 
enhanced capabilities of execution state capture and resource 
control [15,16]. Building on top of the capabilities of Aroma, 
Oasis provides three capabilities: 

• strong mobility where agents can move while 
preserving their execution state 

• forced mobility where, completely transparent to them, 
agents may be moved from one system to another by an 
external asynchronous request 

• secure execution of untrusted agents while protecting 
the host from denial of service and other forms of 
attack 

The Spring implementation is fully interoperable with Oasis but 
does not provide the above features. Spring is well-suited for 
lightweight applications or environments that do not support 
Aroma (e.g., mobile telephones or PocketPC).  

In the context of this paper, the Nomads system is used to 
provide policy enforcement mechanisms and in particular the 
enforcement of the dynamic data transformation policies. The 
FlexFeed architecture (described below) builds on top of Nomads 
and uses Nomads to deploy mobile agents to act as relay and 
transformation nodes within a data path. 

2.5 FlexFeed 
The FlexFeed framework [8] is a middleware communications 
service for multi-agent systems. FlexFeed provides bandwidth-
efficient communication while at the same time addressing the 
limitations of processing capabilities on nodes in the 
communications framework. In particular, FlexFeed is designed 
to support low-powered sources and sinks while processing, 
relaying, and transforming data in-stream on intermediate nodes. 
FlexFeed is opportunistic in taking advantage of available 



resources and can adapt to a changing environment through 
mobility. 

At the core of FlexFeed are a set of services and interfaces that 
facilitate the process by which agents can request and provide 
data streams. Data streams are transferred between agents as a 
sequence of individual messages. In general, data can be 
generated by one or more agents (sources agents) and possibly 
aggregated and distributed to one or more sink agents. The role 
of the FlexFeed framework in this case is to continually evaluate 
data stream requests against communication and information 
release policies to establish and maintain logical distribution 
channels for the data streams. 

The framework provides a simple API for service registration and 
request. The main difference is that the provisioning of the 
request will be checked and potentially modified, transparently 
to the agents, to enforce information release policies between two 
(or more) agents.  

When an agent requests a data feed from some specific source, 
the framework calculates and establishes the data distribution 
path between the two agents. This can be a direct path between 
the two or, if required by policies, it can also involve relay agents 
through which the data will be filtered or modifed to comply with 
information release restrictions.  

If data must be transformed between the source and destination 
agents to satisfy policies, the framework will deploy the 
necessary processing capabilities (usually in the form of a policy 
enforcement agent) to account for that. If the more than one agent 
is receiving the data, appropriate transformation agents are 
deployed along the path to ensure both policy enforcement and 
efficient bandwidth consumption with load distribution. 

Figure 1 illustrates a simple example where two sink agents are 
receiving a data stream from the same source agent (a sensor). 
To satisfy local policies between the sensor and sink agent B, a 
transformation agent T has been deployed to participate in the 
data distribution path.  

Agent A

Sensor

Agent B

Agent T

 
Figure 1: FlexFeed Data Distribution Path To Enforce Data 

Transformation 

One important aspect to note here is that the deployment of the 
transformation agent T is transparent to the agent B. After 
requesting the feed, the agent B simply starts to receive the data 
stream but, for example, in lower resolution due to the policy 
restrictions.  

There are currently two main implementations of the FlexFeed 
framework, one that ensures that every data packet is sent though 
the KAoS framework so each message is explicitly checked and 
evaluated against policies. A second implementation of the 

framework allows direct communication between the agents but 
only through the pre-defined data distribution path established by 
the framework, in compliance with the communication and 
information release policies provided by KAoS. 

3. CoAX Binni Scenario 
The Coalition Agents Experiment (CoAX) relies upon an 
unclassified fictitious military scenario named Binni [13] that 
was created to experiment with coalition military operations. 
Binni is set in the year 2012 and involves three imaginary 
countries in Africa – Binni, Gao, and Agadez. Due to a conflict 
in the region between these three countries, a multinational UN 
peacekeeping force is brought in stop the conflict. The 
multinational force includes the United States, the United 
Kingdom, Canada, and Australia. During the course of the 
scenario, a fourth imaginary country – Arabello – is called upon 
to join the coalition. The Binni scenario provides a rich and 
militarily-relevant setting for experimenting with agent-based 
systems for coalition operations. 

One of the critical concerns in any coalition operation (military 
or civilian) involves protection of sensitive or proprietary 
information. The Binni scenario models the complexities and 
nuances of the relationships between different countries that 
make up the coalition peacekeeping force. For example, the US, 
UK, and Australia have a high degree of mutual trust whereas 
Gao, which is also a member of the coalition, is trusted to a 
lesser extent. Therefore, from the perspective of one country 
(such as the US), there are three different scopes for information 
sharing: agents that are part of the US, agents that are part of the 
UK and Australia, and agents that are part of Gao. 

Moreover, Gao starts out as a member of the coalition force but 
is then found to be providing misinformation to the rest of the 
coalition in order to advance its own private agenda. When this 
deception is discovered, the trust relationships are altered and 
the degree of information sharing between agents has to be 
adapted accordingly. 

Finally, during the scenario Arabello joins the coalition and new 
trust relationships must be established between the existing 
coalition members and Arabello. The coalition needs to be able 
to effectively manage their concerns about information released 
by its agents to Arabello’s agents and vice versa. 

4. KAoS POLICY ARCHITECTURE 
KAoS provides a flexible policy architecture, which was used to 
implement the semantic filtering as well as the dynamic 
transformation policies. Figure 2 shows the overall KAoS 
architecture. From the perspective of this paper, the capabilities 
of KAoS may be divided into three categories: policy definition 
and editing, policy storage, propagation, and mapping, and policy 
enforcement. The major components of KAoS are: 

• KPAT:1 The KAoS Policy Administration Tool is used 
to specify, modify, browse, commit, and otherwise 
administer domains and policies. KPAT comes with a 
generic DAML policy editor; customized editors for 

                                                             
1 Pronounced “KAY-pat.” 



different types of policies can also be created and 
accessed through a pop-up menu. 

• Domain Manager: Domain Managers manage domain 
membership and are responsible for maintaining policy 
consistency. They store policies in the directory and 
distribute policies to Guards as appropriate. 

• Directory Service: The Directory Service acts as a 
secure repository for policies. It can respond to a 
variety of queries from the domain manager and other 
trusted entities. 

• Guards: The guards receive policies from the domain 
manager and enforce them with appropriate 
mechanisms. The Domain Manager maintains a 
mapping of guards and the policies for which they and 
the enforcers they manage are responsible. 

• Enforcers: Components that are capable of enforcing 
particular types of policy on agents. New types of 
enforcers may be added based on the capabilities of the 
underlying execution and agent platforms. 

A more detailed description of KAoS Policy and Domain 
Services can be found in [17]. 

Figure 2: KAoS Architecture 

5. SEMANTIC FILTERING BASED ON 
MESSAGE TYPES 
In some situations, restricting agent communication based solely 
on attributes of the sending or receiving agent may be a too 
coarse grained form of control. Often, the content of the 
communication contains the critical features for determining if 
and how to filter the communication. For example, one might 
wish to restrict the sharing of sensitive personal data or 
proprietary business information. Just as we have used DAML-S 
as the language to express the capabilities and services of agents, 
we use DAML to express the semantic content of the information 
exchanged through services.  Using DAML, we present a system 
for specifying and enforcing a semantic content filter. This 
system requires no modification of source code, allowing content 
filters to be dynamically defined during run-time. 

We have demonstrated this system as part of the CoAX 
technology integration experiment. In the CoAX scenario, the 

country of Arabello joins the coalition. Consequently, a number 
of new agents and agent services need to be dynamically made 
available to coalition agents.  These agents and services are 
dynamically discovered, resulting in a number of new agent 
interactions.  For example, one interaction involves a coalition 
agent tasked to locate a hostile submarine and an Arabello agent 
capable of providing sensor reports from an underwater sensor 
grid. As new coalition partners, Arabello system administrators 
dynamically allow sensor contact reports to be sent to the 
coalition agent, but for security reasons, restrict the range of 
messages that could be sent outside of the Arabello domain. The 
limitation, described as part of a policy represented in DAML, 
limits these outgoing messages to those whose content are 
reports about a specific class of submarine, belonging to the 
enemy forces, but disallowing reports on other ships, such as 
those of Arabello itself. 

5.1 Filter Specification 
In order to enable domain administrators to specify a message 
content filter, it first becomes necessary to access the DAML 
ontology describing the possible outgoing message contents. This 
information is available as part of the DAML-S service 
description for each agent: specifically, the output message 
property in the agent’s service process model. A DAML-S 
process model describes, among other things, the DAML classes 
representing the types of each service’s inputs and outputs.  The 
approach to specification of message filters we adopted enables a 
KAoS domain system administrator to specify or define a 
subclass of the most general allowed class of input or output 
messages that will be permitted to be sent or received by some 
class of agents. 

For each content filter, a GUI is dynamically generated that lets 
the system administrator build up a specialized class definition 
that will be used as a filter by comparing it to each message 
being sent between the classes of agents covered by the policy. If 
the message is subsumed by this class, then the message is 
permitted to be sent or received in the case of a positive 
authorization policy, or blocked in the case of a negative 
authorization policy. The specialized DAML class is created by 
placing additional property range restrictions on the properties of 
the DAML class describing the message content specified in 
general by the agent’s service process model. For each property 
to be restricted, we can create two types of DAML restrictions. 
The first, called a toClass restriction, requires that the value of 
the property be a member of a certain DAML class, the second, 
called a hasValue restriction, requires the property to have a 
specific value. 

KPAT, our policy administration tool, provides an interface by 
which a system administrator can specify policies for interactions 
based on the properties of services and agents discovered 
dynamically at run-time. For the content filtering policies, the 
properties of the DAML class representing the output of each 
service are shown to the administrator in a dynamically 
generated GUI, along with a toClass restriction editor, and a 
hasValue restriction editor. The toClass editor contains a list of 
previously-defined classes that could be selected in order to 
further restrict the property’s range. This list is developed by 
expanding and linearizing the subclass tree of the DAML class 
defining the original daml:range of the property for the message 



class specified for the service. The hasValue editor allows the 
entry of freeform text representing the value of the property, or 
selecting from known instances of the range class, if it consists of 
a pre-defined closed list. Special graphical editors for certain 
DAML classes (e.g., dates and latitude/longitude coordinates) 
are also provided. In addition, if the daml:range is a daml:Class, 
meaning that the range of values of the property is a set of 
DAML class URIs, the possible values are automatically 
generated, just as for the toClass restriction.  

The interface generated for our CoAX example is shown in 
Figure 3. By selecting DieselSubmarine in the hasValue editor 
for the property objectClassification, the system administrator is 
restricting outgoing sensorReportResult messages from the 
Arabello agent that is the subject of the policy to those with 
property objectClassification having the value DieselSubmarine. 

 
 

Figure 3: Semantic Content Filter Specification Dialog 

5.2 Filter Generation 
Once the classes describing the message properties that indicate 
which messages are to be filtered is specified through this GUI, a 
persistent DAML class is created, representing the full set of 
these restrictions. This new DAML class is defined as an 
intersection of the original output message class and a class 
expression (specified using daml:Restriction) for each property 
that is further restricted by a toClass or hasValue expression. In 
our example, the resulting DAML class is given below: 

<daml:Class rdf:ID="RestrictedASWSensorReport"> 

  <daml:intersectionOf rdf:parseType="daml:collection"> 

    <daml:Class rdf:about="&asw;#ASWContactReport"/> 

    <daml:Restriction rdf:ID> 

      <daml:onProperty rdf:resource="&asw;#objectClassification"/> 

      <daml:toClass rdf:resource="&vehicles;#DieselSubmarine"/> 

    </daml:Restriction> 

  </daml:intersectionOf> 

</daml:Class> 

5.3 Policy Conflict Resolution 
Changes or additions to policies in force, or a change in status of 
an actor (e.g., an agent joining a new domain or moving to a new 
host) or some other entity require logical inference to determine 

first of all which policies are in conflict and second how to 
resolve these conflicts. We have implemented a general-purpose 
algorithm within KAoS for policy conflict detection and 
harmonization whose initial results promise a high degree of 
efficiency and scalability. 

Figure ** shows the three types of conflict that can currently be 
handled: positive vs. negative authorization (i.e., being 
simultaneously permitted and forbidden from performing some 
action), positive vs. negative obligation (i.e., being both required 
and not required to perform some action), and positive obligation 
vs. negative authorization (i.e., being required to perform a 
forbidden action). We have developed policy deconfliction and 
harmonization algorithms within KAoS to allow policy conflicts 
to be detected and resolved even when the actors, actions, or 
targets of the policies are specified at vastly different levels of 
abstraction. These algorithms rely in part on a version of 
Stanford’s Java Theorem Prover 
(http://www.ksl.stanford.edu/software/JTP/) that we have 
integrated with KAoS. 

Figure 4: Three  types of policy conflict. 

Steps in policy conflict resolution. KAoS performs several steps 
in order to resolve policy conflicts: 

1. DAML policy ontologies are loaded into JTP along 
with the set of DAML policies to be deconflicted. 

2. A list of all policies in constructed and sorted according 
to user-defined criteria for policy precedence. 

3. For each policy in the sorted list, iterate through all the 
elements with a lower precedence and check to see if 
there is a policy conflict. A policy conflict occurs if the 
two policies are instances of conflicting types and if a 
subsumption algorithm determines that the action 
classes that the two policies control are not disjoint. 

4. The lower precedence policy from the conflicting pair 
of policies is removed from the list and the policy 
harmonization algorithm is invoked. It attempts to 
modify the policy with the lower precedence to the 
minimum degree necessary to resolve the conflict (if 
the policies are of equal precedence, a user may be 



required to specify which policy will take precedence). 
The harmonization algorithm may generate zero, one or 
several new policies to replace the removed policy. 

The newly constructed harmonized policies inherit the 
precedence and the time of last update from the removed policy, 
and a pointer to the original policy is maintained so that it can be 
recovered if necessary as policies continue to be added or deleted 
in the future. 

5.4 Policy Enforcement 
In order for the filter to be enforced, the newly-generated DAML 
class is provided, through the KAoS policy framework, to a 
policy enforcer. In applications to date, we have relied on several 
different kinds of enforcement mechanisms. Enforcement 
mechanisms built into the execution environment (e.g., OS or 
Virtual Machine level protection) are the most powerful sort, as 
they can generally be used to assure policy compliance for any 
agent or program running in that environment, regardless of how 
that agent or program was written. A second kind of enforcement 
mechanism takes the form of extensions to particular agent 
platform capabilities. Agents that participate in that platform are 
generally given more permissions to the degree they are able to 
make small adaptations in their agents to comply with policy 
requirements. Finally, a third type of enforcement mechanism is 
necessary for obligation policies. Because obligations cannot be 
enforced through preventive mechanisms, enforcers can only 
monitor agent behavior and determine after-the-fact whether a 
policy has been followed. 

In CoAX, a message content policy enforcer used a message 
content policy guard, to test whether the policy applies to each 
message. This guard was developed using the Java Theorem 
Prover (JTP) developed at Stanford KSL [11]. The enforcer 
provides to the guard the class describing the filter for which the 
policy is defined along with the URIs of the DAML ontologies 
referenced by this filtering class. Subsequently, whenever 
messages being transmitted between the classes of agents 
covered by the policy are detected, the content of those messages 
(also represented in DAML) is given to guard for comparison to 
the message filter class. This test succeeds if the message content 
is inferred to be an instance of the filter class. If it is, and the 
policy is a positive authorization policy, then the message passes 
the filter, and the enforcer permits it to be sent to its destination. 
If the policy is a negative authorization policy and the test 
succeeds, then the message is blocked. The reasoning provided 
by JTP in conjunction with a set of axioms defining the 
semantics of the DAML language and the sets of ontologies 
referenced by the message filter class and the message being 
tested enables the necessary reasoning about toClass and 
hasValue restrictions of the policy. 

In order for our semantic content filters to be tested against agent 
messages, the message content must be a DAML instance. For 
the CoAX demonstration, all agent messages were specified 
directly in DAML, by using DAML-S in conjunction with a 
grounding mechanism that wrapped the DAML message content 
(a string in RDF syntax) in a CoABS Grid message. If, however, 
the content of the message was in some other form, a mapping 
would need to be defined between the raw content of the 

message and a semantic encoding as a DAML description in 
order to use this approach to message filtering. 

6. DYNAMIC TRANSFORMATION OF 
DATA FLOW BETWEEN AGENTS 
Control of information release between agents may involve more 
than just the acceptance or rejection of messages based on 
policies and constraints. It is important, in some cases, to provide 
a mechanism to transparently modify the messages so they can 
satisfy the different policies for delivery in a secure and efficient 
way. Such a capability is especially important in critical 
scenarios such as military coalition operations or specialized 
sensor networks. 

The FlexFeed framework relies on the automatic deployment of 
mobile agents with specialized data transformation capabilities to 
filter data streams so that they can satisfy policy constraints. 
These transformation agents act as policy enforcers that relay the 
data stream to the client agents. The framework is responsible 
for automatically customizing and deploying the agents that will 
constitute the distribution data path (or paths) between one or 
more source and sink agents.  

The use of mobile agents as processing elements is an important 
feature of the FlexFeed framework, providing several additional 
capabilities such as: a) enabling the easy deployment of 
customized transformation code into intermediary nodes, and b) 
supporting the movement of transformation agents between 
nodes while retaining its state and redirecting resources (such as 
TCP connections) as needed. 

Within the CoAX scenario, the need for data transformation 
arises when Arabello joins the coalition. As the scenario 
progresses, Arabello needs to obtain data from a Magnetic 
Anomaly Detection (MAD) sensor onboard an Australian ship. 
By default, policies do not allow any communication between 
agents in Arabello and agents in a particular country as shown in 
Figure 5. 

 
Figure 5: Australia and Arabello Domains Under 

Communication Restriction Policies 

Direct communication between the to domains is not allowed but 
given the circumstances, the domain managers decide to allow a 
specific data feed to be provided as long as the full capabilities of 
the Australian sensor are not revealed to Arabello. 



At this point, a new policy must be added to allow restricted 
communication between the nodes. KPAT is used by the 
Australian system administrator to create a new customized 
policy for data transfer. In this example, the policy refers to 
restrictions on video resolution given that the MAD data is 
transmitted as a series of images from the Australian sensor. To 
make this data available to Arabello, the resolution and the frame 
rate must be dropped, since the actual capabilities of the 
Australian sensor are classified. 

The new policy is specialized to the type of data be transmitted. 
Because it is specific in terms of image resolution and frame 
rate, the policy can be added using a custom editor made 
available through a special pop-up menu in KPAT. 

Figure 6 shows a screenshot of KPAT (in the back), with a 
superimposed screenshot of the custom policy editor for this 
example. Adding a specialized policy to this framework consists 
of having a DAML representation of the policy and a 
corresponding mobile agent for enforcement. 

 
Figure 6: KPAT With a Custom Policy Editor For Video-

style Data 

A partial representation of the policy in DAML is shown in 
Figure 8 below. 

The creation of an information release policy in this case will 
result on the immediate configuration and dispatch of a 
transformation agent to relay the data to the Arabello client. 

Figure 7 shows a schematic representation of the deployment of 
the transformation agent. The transformation agent is configured 
to receive the video feed from the Australian sensor, reduce its 
resolution and relay the data to the Arabello client. The Arabello 
client is allowed to communicate only with the transformation 
agent.  

 
Figure 7: Automatic Deployment of the Transformation 

Agent as a Consequence of the Creation of the New Policy. 

The transformation agent can be deployed to the sensor itself or 
to any intermediary node (another ship on the Australian domain, 
maybe) to distribute load within the domain. In the CoAX demo, 
the transformation agent is deployed directly to the Australian 
ship but the FlexFeed framework can, if needed, transparently 
determine the location to deploy the processing (or 
transformation) agent, for efficiency and load distribution. 

One important aspect to be noted is that for the Arabello client, 

 

Figure 8: DAML Representation of the information release policy 

 



the whole process can be transparent. In the CoAX experiment, 
upon requesting a feed from the Australian ship, the domain 
administrator (a human) decides to create the new policy, which 
results in the deployment of the agents. It then notifies the 
Arabello client that the data is available from agent T (the 
transformation agent).  

The FlexFeed framework can also hide this process from the 
client. In such an example, if a subsequent call is made from the 
Arabello client to the Australian sensor, since the information 
release policy is already in place, the transformation agent would 
be immediately deployed and data would start flowing to 
Arabello, with no need for human intervention. When the client 
requests the termination of the feed, the link is terminated and 
the transformation agent is simply discarded. 

Figure 9 shows a screenshot of the MAD data in both ends of the 
link. In the back image the window shows how the data is 
available for agents within the Australian domain (higher 
resolution) and the front image represents the data received by 
the Arabello client (lower resolution).  

The policy enforcement agent discussed in this example 
essentially provides three different types of data transformation: 
a) it can change image resolution, b) change frame rate and c) 
introduce a time lag, to prevent transmission of a real time video.   

There are though, many other types of transformations that could 
be applied to the data. A transformation agent could, for 
instance, be implemented to hide sensitive targets or classified 
infrastructures from the image. This would be used to prevent the 
release of non necessary details to the requesting agent by 
blurring or editing the image appropriately. Another example is 
an agent that reduces the precision of coordinate values that are 
part of messages being transmitted. 

7. SUMMARY AND FUTURE WORK 
Both the semantic filtering and the dynamic transformation 
components were successfully demonstrated as part of the 
DARPA Coalition Agents Experiment (CoAX). Semantic 
filtering was used to protect sensitive data from Arabello from 
being released to the rest of the coalition members. Dynamic 
transformation was used to reduce the resolution of the data feed 
from a MAD sensor in the Australian domain to Arabello. 

 Policy-based control over data release and data transformation is 
extremely important in situations where multi-agent systems 
encompass more than one entity, administrative domain, 
organization, or country. Incorporation of mechanisms such as 
those described in this paper are essential to providing (human) 
system administrators the control and the confidence to use 
agent-based architectures in real-world scenarios 

 

 
Figure 9: Data transformation for policy enforcement 

. 

We are investigating extending our semantic content filters in 
order to handle more complex restrictions than was possible 
using constraints on individual message properties. In many 
cases this pushes the limits of DAML expressiveness as well as 
requiring extensions to the set of axioms used by JTP in order to 
test for other types of restrictions. For example, in the CoAX 
domain, it would be useful to allow only contact reports where 
the object position is inside a certain region, specified by a set of 
latitude/longitude points. The mathematical relationship between 
a point and a polygonal region cannot be expressed directly in 
DAML. Furthermore, the computation required is best done by 
functional attachment to an axiom, rather than using logical 
inference. We are currently working on ways to bring this kind of 
filtering within the range of the overall policy enforcement 
mechanism.  

We are also working on additional types of transformation agents 
and the corresponding policy editors for KPAT. 

8. REFERENCES 
[1] Allsopp, D., Beautement, P., Bradshaw, J. M., Durfee, 

E., Kirton, M., Knoblock, C., Suri, N., Tate, A., & 
Thompson, C. (2002). Coalition Agents eXperiement 
(CoAX): Multi-agent cooperation in an international 
coalition setting. A. Tate, J. Bradshaw, and M. 
Pechoucek (Eds.), Special issue of IEEE Intelligent 
Systems, 17(3), 26-35. 

[2] Ankolenkar, A., Burstein, M., Hobbs, J.R., Lassila, 
O., Martin, D.L., McDermott, D., McIlraith, S.A., 
Narayanan, S., Paolucci, M., Payne, T.R., and Sycara, 
K. (2002). DAML-S: Web Service Description for the 



Semantic Web. Presented at The First International 
Semantic Web Conference (ISWC). 

[3] Ankolekar, A., Burstein, M., Hobbs, J., Lassila, O., 
Martin, D., McIlraith, S., Narayanan, S., Paolucci, 
M., Payne, T., Sycara, K., and Zeng, H. (2001, July). 
DAML-S: Semantic Markup for Web Services. 
Presented at International Semantic Web Working 
Symposium (SWWS). 

[4] Berners-Lee, T., Hendler, J., & Lassila, O. (2001). 
The Semantic Web. Scientific American. 

[5] Bradshaw, J. M., Dutfield, S., Benoit, P., & Woolley, 
J. D. (1997). KAoS: Toward an industrial-strength 
generic agent architecture. In J. M. Bradshaw (Ed.), 
Software Agents. (pp. 375-418). Cambridge, MA: 
AAAI Press/The MIT Press. 

[6] Bradshaw, J. M., Greaves, M., Holmback, H., Jansen, 
W., Karygiannis, T., Silverman, B., Suri, N., & 
Wong, A. (1999). Agents for the masses: Is it possible 
to make development of sophisticated agents simple 
enough to be practical? IEEE Intelligent 
Systems(March-April), 53-63. 

[7] Bradshaw, J. M., Suri, N., Breedy, M. R., Canas, A., 
Davis, R., Ford, K. M., Hoffman, R., Jeffers, R., 
Kulkarni, S., Lott, J., Reichherzer, T., & Uszok, A. 
(2002). Terraforming cyberspace. In D. C. Marinescu 
& C. Lee (Ed.), Process Coordination and Ubiquitous 
Computing. (pp. 165-185). Boca Raton, FL: CRC 
Press. 

[8] Carvalho, M. and Breedy, M. (2002) Supporting 
Flexible Data Feeds in Dynamic Sensor Grids 
Through Mobile Agents. Proceedings of the 6th 
International Conference on Mobile Agents (MA 
2002). Berlin: Springer-Verlag. 

[9] Global Info-Tek , Inc. DARPA CoABS Grid. On-line 
Reference: http://coabs.globalinfotek.com. 

[10] Hendler, J.  and McGuinness, D. L. (2000, 
November). The DARPA Agent Markup Language. 
IEEE Intelligent Systems. [Online]. 15 (6) , pp. 67-73. 

[11] http://www.ksl.stanford.edu/software/JTP 

[12] Kahn, M., & Cicalese, C. (2001). CoABS Grid 
Scalability Experiments. O. F. Rana (Ed.), Second 
International Workshop on Infrastructure for Scalable 
Multi-Agent Systems at the Fifth International 
Conference on Autonomous Agents. Montreal, CA, 
New York: ACM Press. 

[13] Rathmell, R.A. (1999) A Coalition Force Scenario 
'Binni - Gateway to the Golden Bowl of Africa', in 
Proceedings of the International Workshop on 
Knowledge-Based Planning for Coalition Forces, (ed. 
Tate, A.) pp. 115-125, Edinburgh, Scotland, 10th-
11th May 1999.  

[14] Sun Microsystems, Inc. Jini Network Technology. On-
line Reference: http://wwws.sun.com/software/jini/.   

[15] Suri, N., Bradshaw, J. M., Breedy, M. R., Groth, P. 
T., Hill, G. A., & Jeffers, R. (2000). Strong Mobility 
and Fine-Grained Resource Control in Nomads. 
Proceedings of the 2nd International Symposium on 
Agents Systems and Applications and the 4th 
International Symposium on Mobile Agents 
(ASA/MA 2000). Zurich, Switzerland, Berlin: 
Springer-Verlag, 

[16] Suri, N., Bradshaw, J. M., Breedy, M. R., Groth, P. 
T., Hill, G. A., Jeffers, R., Mitrovich, T. R., Pouliot, 
B. R., & Smith, D. S. (2000). Nomads: Toward an 
environment for strong and safe agent mobility. 
Proceedings of Autonomous Agents 2000. Barcelona, 
Spain, New York: ACM Press. 

[17] Uszok, A., Bradshaw, J. M., Jeffers, R., Suri, N., 
Hayes, P., Breedy, M., Bunch, L., Johnson, M., 
Kulkarni, S., & Lott, J. (2003). KAoS policy and 
domain services: Toward a description-logic approach 
to policy representation, deconfliction, and 
enforcement. Submitted to Policy 2003. 

 

 


