

V. Mařík, R.W. Brennan, M. Pĕchouček (Eds.): HoloMAS 2005, LNAI 3593, pp. 197 – 206, 2005.
© Springer-Verlag Berlin Heidelberg 2005

KARMEN: Multi-agent Monitoring and Notification
for Complex Processes

Larry Bunch, Maggie Breedy, Jeffrey M. Bradshaw, Marco Carvalho,
and Niranjan Suri

Florida Institute for Human and Machine Cognition,
40 S. Alcaniz St. Pensacola, FL 32563

{lbunch, mbreedy, jbradshaw, mcarvalho, nsuri}@ihmc.us
http://www.ihmc.us/

Abstract. Early and consistent detection of abnormal conditions is important to
the safe and efficient operation of complex industrial processes. Our research
focuses on enabling the operators and engineers who control and maintain such
systems to describe process conditions to software agents, deploy such agents to
continuously monitor live process data, and receive appropriate notification
from their personal agents concerning the process state. The resulting dynamic
population of monitoring agents is managed by our agile computing framework
according to policies that define computing and networking resource
restrictions as well as user notification requirements and preferences.

1 Introduction

The Florida Institute for Human and Machine Cognition (IHMC) is conducting
research and development for automated safety and health monitoring of industrial
chemical processes [1] as well as the NASA space shuttle fueling and launch process.
Our current KAoS Reactive Monitoring and Event Notification (KARMEN) multi-
agent system enables users to perform automated live monitoring of complex process
conditions that were typically only detected manually or during post-analysis of
recorded process data [2]. This research also extends to the complementary area of
remote user notification, most notably concerning adapting the notification mode and
salience based on the event context.

We have taken a human-centered approach to monitoring automation that
complements the user’s ability to identify relevant monitoring contexts with the
software agent’s ability to rapidly and vigilantly assess the process state. This frees
our agents from needing complete and accurate models of the systems being
monitored and also distinguishes our work from related multi-agent approaches to
chemical and manufacturing systems diagnostics [3-5].

A brief description of KARMEN is followed by more detailed coverage of recent
results involving how users describe process conditions to agents, how the resulting
ad-hoc population of agents are deployed and managed by the framework, and the
role of ontologies and policies in creating and controlling these agents.

198 L. Bunch et al.

2 KARMEN Overview

The health monitoring and process control of a complex system involves an extensive
network of sensors, processors, and actuators. The elements of this process intranet
may be linked together wirelessly or by more conventional means. In either case,
unique opportunities for process control and health monitoring are offered by
software agents that can migrate within the network to accomplish tasks specified by
the human operators. Conceptually, a number of collaborating agents seek, collect,
and evaluate data from individual sensors, interacting with other agents to form a
composite picture of system state, and interacting with the human operators to provide
information that is critical for system safety. The mobility of such agents (their ability
to migrate within the system as required to accomplish tasks) introduces a previously
unavailable degree of flexibility in the development of safety and health monitoring
systems.

From the users’ perspective, KARMEN is a desktop application for creating and
deploying software agents to continuously monitor a process and notify the user as the
conditions obtain and abate. Agent creation begins with condition specification. The
user browses the space of sensors, valves, and other control elements comprising the
process and selecting among the data streams each component provides.

Fig. 1. Users construct graphical expressions to describe process conditions to monitoring
agents, in this case involving the set of values from the operator screen shown in the
background

 KARMEN: Multi-agent Monitoring and Notification for Complex Processes 199

 (P1 > Phi & S1 > Shi) | (P1 < Plow & S1 < Slow) | (P2 > Phi & S2 > Shi) | …) (1)

Part of our research includes applying semantic web techniques to provide rich and
flexible descriptions and classifications of sensors through both enumeration and
common properties such as type, limits, capabilities, location, and status. The user
next selects the control elements to monitor, then uses a graph-based interface to
assemble the process variables into a logical expression. For example, liquid
hydrogen (LH2) leak sensors are placed at intervals along a shuttle fueling line in
pairs of primary and secondary (SEC) detectors. In this case there are over 50 sensors
to monitor that are individually very sensitive and therefore prone to false positives.
The graph in figure 1 expresses the condition that the high or low limit has been
exceeded for a pair of primary and secondary LH2 leak sensors concurrently. The
same expression is also depicted in formula 1 below. The user launches the agent into
the KARMEN system where the agent survives indefinitely monitoring the process
conditions and notifying the user. Perhaps through the KARMEN application if it is
running, otherwise through email, text pager, or other modes.

From a systems perspective, KARMEN is a set of host environments configured to
run these agents as well as a collection of services for managing them and the
resources they consume. When a new agent is requested a central coordinator service
determines where the agent is deployed based on the components referenced, the
monitored condition expression and its sub-expressions, as well as available host
resources and overlap with existing agents. The coordinator service establishes data
feeds among agents and can move agents from host to host to balance processing and
network load as well as keeping the agents running. Policies play an important role in
restricting user access to sets of components, setting constraints on the resources
agents are allowed to consume, and defining preferences concerning how the
notification service will deliver messages.

3 KARMEN Architecture

KARMEN relies upon multi-agent frameworks developed at IHMC to manage and
control its Java agent population as shown in figure 2. The FlexFeed agile computing
framework provides mobile agent hosting, networking, and coordination. The KAoS
policy framework provides tools and services for defining polices that constrain agent
actions and resource usage as well as oblige agent actions including user notification.
KARMEN and KAoS both rely upon semantic web ontologies developed using the
W3C standard Web Ontology Language (OWL). KAoS also provides an extensible
base ontology with services to query the ontology.

3.1 FlexFeed Agent Networking Framework

FlexFeed is a Java agent framework that facilitates communication between agents
and manages the computing and network resources within a distributed multi-agent
system [6, 7]. KARMEN agents rely on the FlexFeed API for mobile deployment and
access to information feeds among heterogeneous sensor, intermediate, and user

200 L. Bunch et al.

OWL Ontology Repository
Sensors, Agents, Policies, Prefs

FlexFeed Network

Monitor
Agent

Sensor
Agent

Sensor
Agent

User
Notify
Agent

Sensor
Agent

Monitor
Agent

KAoS
Policy

Services

KAoS
Notification
Services

Pager,
Cell,

IM, Email,
PDA

KARMEN
GUI

authorization preferences

Shuttle
Sensor

Process
Control
Sensor

Shuttle
Sensor

OPC
protocol

Users

deploy

display

notify

reply

Multicast

resource
constraints

FlexFeed Nodes

Fig. 2. A high-level depiction of the relationships among KARMEN system components

nodes. FlexFeed supports policies that restrict communication among agents and limit
agent resource usage. The transport mechanism, message distribution, and filtering
are each handled at the framework level, hiding these implementation details from the
data producers and consumers. This architecture allows the framework to
transparently customize the routing and transformation data streams while abstracting
from the agent the tasks associated with the protocol selection, policies, and load
balancing. Multiple communication protocols and lookup services can coexist in the
network and FlexFeed will determine what protocols to use in order to distribute
messages between any two nodes. This API provides two main components: the
FlexFeed Manager, that handles agent lookup and delivery of data, and the FlexFeed
Coordinator which is the intelligent component that is responsible for establishing and
maintaining data streams in the framework. The Coordinator distributes processing
load and bandwidth consumption across the framework preserving the resources on
the nodes. Upon multiple requests on the same sensor, the Coordinator has the ability
to discover and use intermediate processing nodes to minimize the network bandwidth
and improve load balancing.

3.2 KAoS Policy Services

KAoS is a collection of policy services compatible with several software agent and
robotic frameworks, as well as traditional distributed services platforms (e.g.,
CORBA, Web Services, Grid Computing) [8-10]. In the context of KARMEN, KAoS
is used to define, manage, deconflict, and enforce policies restricting agent access to
sensor data, bounding agent resources, and governing the mode of notification to
users. The KAoS Policy Ontologies (KPO; http://ontology.ihmc.us/) are represented
in the W3C standard Web Ontology Language (OWL) [11]. KAoS relies on an
integrated theorem prover along with KAoS-specific extensions to support
representation and reasoning about policies.

The current version of KPO defines basic ontologies for actions, actors, groups,
places, various entities related to actions (e.g., computing resources), and policies. As

 KARMEN: Multi-agent Monitoring and Notification for Complex Processes 201

the application runs, classes and individuals corresponding to new policies and
instances of application entities are also transparently added and deleted as needed.
Through various property restrictions, a given policy can be appropriately scoped to
various domains, for example, either to individual agents, to agents of a given class,
to agents belonging to a particular group, or to agents running in a given physical
place or computational environment. Additional aspects of the action context can be
precisely described by restricting values of its properties. Groups of people, agents,
and resources are also structured into ontologies to facilitate policy administration.

3.3 OWL Ontology Representation and Reasoning

Our system employs OWL to organize and classify process components, monitoring
states, notification modes and salience, as well as users and organizational roles.
OWL is a powerful description logic-based language developed for the semantic web.
It provides vocabulary for describing properties and classes including relations
between classes (e.g. disjointness), cardinality (e.g. “exactly one”), equality, rich
typing of properties, characteristics of properties (e.g. symmetry), and enumerated
classes. Combined with the reasoning capability of Stanford’s Java Theorem Prover
(JTP; http://www.ksl.stanford.edu/software/jtp/), these ontologies enable users to
effectively describe sophisticated monitoring conditions in a way that is accessible to
agents. To make the use of OWL simple to non-specialist users, a number of
graphical user interfaces have been defined.

We employ ontological classifications of process control components and events
for expressing potentially large and complex aggregate monitoring conditions. to
dynamically define custom limits and alarm conditions that were previously only pre-
defined in the control system.

4 Process Monitoring

Some key challenges in monitoring automation include enabling users to easily
describe conditions of interest to the monitoring software, allowing users to
dynamically change the conditions being monitored without affecting the process
control, automatically changing the monitored conditions in response to changes in
the process state, efficiently evaluating the system state for the given conditions, and
effectively communicating the process state back to the user.

4.1 Describing Process Conditions

KARMEN users define process conditions for agents using a graph-based tool to
build expressions concerning process state as shown in figure 2. Users browse for
individual sensors or classes of sensors and add these inputs to the graph. Nodes are
then selected to compare, combine, and transform these sensor inputs into a logical
expression. When the user launches the agent, each sub-expression can be assigned to
an existing agent in the FlexFeed network for evaluation or new agents be created as
needed.

One particularly valuable aspect of the research involves enabling users to monitor
complex and aggregate process conditions that could not previously be monitored at

202 L. Bunch et al.

runtime. Defining ontologies of process variables in OWL enables users to organize
and classify sensors by relevant properties to easily express complex monitoring
conditions for groups of related sensors (e.g. monitor for any sensor value from
shuttle main engine one that exceeds 90% of its associated high alarm limit). Using
ontological classes in monitoring expressions allows users to define complex
aggregate conditions concisely. For example, the class of “all sensors on main engine
one with a high limit value” can be constructed in the ontology based on the common
properties of individual sensors such as location and limits. Such an ontology class
can then be incorporated into a monitoring expression such as “sensor current value
greater than 90% of sensor’s high limit”. This allows users to define conditions at a
variety of scopes from the very narrow and specific to system-wide.

4.2 Monitoring Capabilities

The most basic capabilities of the process monitoring agents for this system include
comparing process variables to scalar values and other process variables (e.g. monitor
for a valve’s actuator position greater than its predefined high alarm limit). We
effectively extend the alarm functionality commercial control systems provide with
the added value of making this capability available for ad-hoc and remote use. The
ability to inject new conditions non-intrusively into an operational environment is
critical. We can further incorporate monitoring statistical summaries of sensor
behavior including standard deviation, variance, mean, and rate of change over a
given time period or number of samples. Users can also employ mathematical
expressions to derive new aggregate conditions (e.g., monitor the product of pressure
and temperature sensor readings), annotate process variables such as defining
progressive high and low limits, and access system annotations such as maximum,
minimum, and average observed values from historical data. These feature support
live, flexible monitoring using new combinations of parameters not inherent in the
control system.

Adding remote monitoring capabilities carries the responsibility to control access
to sensitive data. The KAoS policy services leverage the ontologies defined for
classifying sensors to also define and enforce authorization policies that restrict access
to process data such as “IHMC personnel can only access sensors in the shuttle main
engine class” which will deny authorization to access feeds from these sensors to all
agents created by IHMC personnel. Such policies could also describe reductions of
sampling rate or precision which the agents would enforce.

4.3 User Notification

Notifications are generated as the monitored conditions obtain and abate. The mode,
salience, and recipients of each notification are governed by KAoS policies
representing organizational requirements and users’ personal preferences. Notification
modes may include E-mail, Instant Message, Pager, and Operator Displays.
Notification policies typically cover such factors as event type, severity, the
recipient’s organizational role and presence, and the plant area in which the event
occurred. For example, a policy might be to “page an onsite Field Operator
immediately when a critical H2 Plant monitored condition is satisfied and the Process

 KARMEN: Multi-agent Monitoring and Notification for Complex Processes 203

Engineer is unavailable”. The selection of mode, recipients, and salience is made at
runtime based on information gathered about the user’s presence and the modes
available (e.g. the user’s instant message client indicates user is available and the
user’s schedule indicates she is onsite).

The default behavior of the Notification agent is to display messages in the
KARMEN application interface. All other notification actions are governed by KAoS
policies representing organizational requirements and personal preferences. Each
policy obliges the notification agent to take certain actions based on the qualities of
the monitored event and the current disposition of the concerned personnel. We have
developed a set of initial ontologies depicted in figure 3 for notification that draws
heavily on the work of Schrekenghost and colleagues [13].

The current event characteristics that can trigger a policy include the event type
(satisfied/unsatisfied condition, activated/deactivated alarm: see ConditionStatus in
figure 3), the assigned event severity (critical, warning, advisory, log), and the plant
area in which the event occurred based on the component hierarchy defined in the
ontology.

The user characteristics that can trigger a policy include the user’s organizational
role (operator, process engineer, area manager, etc.) and the user’s current physical
and computational presence (nearby/remote, online/offline: see figure 3). The
qualities of the notification action that policies can oblige include the mode, latency,
and focus of attention. Notification modes currently include e-mail, instant message,
pager, operator displays, and the IHMC Monitor application. The latency quality
controls how quickly the user is notified (immediate, deferred, archive). The focus of
attention quality controls how forcefully the user’s attention is obtained and depends
on the features available in each notification mode (e.g. instant message chat session
that interrupts the user vs. a queued message in the background).

The notification obligation policies are created using the KAoS Policy
Administration Tool (KPAT) shown in figure 4. The attributes of the policy are from
the ontological concepts shown in figure 3.

Fig. 3. OWL ontologies used by the KARMEN system for notification are graphically depicted

204 L. Bunch et al.

Fig. 4. The KAoS Policy Administration Tool (KPAT) screen displaying a sample set of
policies that govern notification modes in the KARMEN system

Multiple policies can apply to a single event such as using the pager mode for
critical events, using the instant message mode for critical events when the user is
online, and using the primary focus of attention for critical events. Each policy is
assigned a priority. KAoS uses the priority to resolve policy conflicts thereby
enforcing organizational policies over personal preferences. The user notification
agents can require and obtain acknowledgement of notifications and escalate the
notification mode and recipients when acknowledgement is not received in a specified
timeframe. In the near future, agents will select notification mode and salience based
on the recipient’s responsiveness to previous notification attempts by learning the
most effective mode of contacting each user according to the time, user presence, and
condition severity. Monitoring agents can begin recording a set of sensor values when
the specified conditions obtain, stop recording when the conditions abate (or after a
certain duration), then include a graph of the recorded data as an attachment to
electronic notifications. Summaries could be extended to several formats including
movies, spreadsheets, and PDF files.

5 Summary

The KARMEN system is distinguished by its human-centered approach of providing
tools to create personal monitoring agents with rich semantic descriptions of process
state and salient user notification. These agent-based tools complement and amplify
the expertise of the engineers and operators with the ability to create and refine
personally relevant assessments of live process conditions. KARMEN focuses on

 KARMEN: Multi-agent Monitoring and Notification for Complex Processes 205

supporting users in the difficult task of safely and effectively operating complex
processes. We enable operators to specify complex monitoring conditions by using
intuitive graphical tools; these conditions can be changed at any time without
affecting the process control. Users also can apply ontological classes to define
complex aggregate conditions that have not been previously specified in real-time.

References

1. Bunch, L., Breedy, M., Bradshaw, J., Carvalho, M., Suri, N., Uszok, A., Hansen, J.,
Pechoucek, M., and Marik, V. 2004. Software Agents for Process Monitoring and
Notification. In Proceedings of the ACM Symposium for Applied Computing, Nicosia,
Cyprus, 94-99. New York: ACM.

2. T. Blevins, G. McMillan, W. Wijsznis, and M. Brown, Advanced Control Unleashed:
Plant Performance Management for Optimum Benefit. Research Triangle Park, NC: The
Instrumentation, Systems, and Automation Society, 2003, pp. 163-182.

3. N. Hamdy and R. Fulvio, “Abnormal Condition Management with Real-time Expert
System and Object Technology,” PCAI, vol 17(1), pp. 28-35, 2003.

4. F. Heck, T. Laengle, H. Woern, “A Multi-Agent Based monitoring and Diagnosis System
for Industrial Components,” University of Karlsruhe, Institute for Process Control and
Robotics. Karlsruhe, Germany.

5. I.A. Letia, F.Craciun, Z. Kope, A. Netin, “Distibuted Diagnosis by BDI Agents”. In
Proceedings of the IASTED International Conference APPLIED INFORMATICS.
Innsbruck, Austria. 2000.

6. M. Carvalho and M. Breedy, “Supporting Flexible Data Feeds in Dynamic Sensor Grids
Through Mobile Agents”. In Proceedings of the 6th International Conference in Mobile
Agents, Barcelona, Spain, October 2002.

7. N. Suri, J.M. Bradshaw, M. Breedy, P. Groth, G. Hill, R. Jeffers, and T. Mitrovich, “An
Overview of the NOMADS Mobile Agent System,” Sixth ECOOP Workshop on Mobile
Object System. Available: http://cui.unige.ch/~ecoopws/ws00.

8. A. Uszok, J.M. Bradshaw, R. Jeffers, N. Suri, P. Hayes M Breedy, L. Bunch, M. Johnson,
S. Kulkarni, and J. Lott, “KAoS policy and Domain Services: Toward a Description-logic
Approach to Policy Representation, Deconfliction, and Enforcement,” In Proceedings of
IEEE Fourth International Workshop on Policy. Lake Como, Italy, June 2003, pp. 93-98.

9. J.M. Bradshaw, A. Uszok, R. Jeffers, N. Suri P. Hayes, M. Burstein, A. Acquisti,, B.
Benyo, M. Breedy, M. Carvalho, D. Diller, M. Johnson, S. Kulkarni, J. Lott, M. Sierhuis,
& R. Van Hoof, “Representation and Reasoning for DAML-based Policy and Domain
Services in KAoS and Nomads,” In Proceedings of the Autonomous Agents and Multi-
Agent Systems Conference. Melbourne, Australia. ACM Press, New York, NY, 2003, pp.
835-842.

10. J.M. Bradshaw, P. Beautement, M. Breedy, L. Bunch, S. Drakunov, P.J. Feltovich, R.R.
Hoffman, R. Jeffers, M. Johnson, S. Kulkarni, J. Lott, A. Raj, N. Suri, & A. Uszok,
“Making Agents Acceptable to People,” In Intelligent Technologies for Information
Analysis: Advances in Agents, Data Mining, and Statistical Learning, N. Zhong and J.
Liu, Eds. Berlin, Germany, Springer Verlag, 2004, pp. 361-400.

11. J. Hendler, T. Berners-Lee and E. Miller, “Integrating Applications on the Semantic
Web,” Journal of the Institute of Electrical Engineers of Japan, vol 122(10), October,
2002, pp. 676-680.

206 L. Bunch et al.

12. D. Schreckenghost, C. Martin, C. Thronesbery, “Specifying Organizational Policies and
Individual Preferences for Human-Software Interaction,” In Etiquette for Human-
Computer Work, Papers from the AAAI Fall Symposium. Technical Report FS-02-02,
AAAI Press, 2003.

13. C. Glymour, K. McGlaughlin, “Analyzing A Data Lookup Method for Machine Learning
in Monitoring and Fault Localization for Hydrogen Generation Plants, Chemical
Processing Plants and Other Complex Systems,” Final Report for UCF contract 26-56-
208. Pensacola, FL, September 2003.

14. S.D.J. McArthur, E.M. Davidson, J.A. Hossack and J.R. Mc Donald. Automating Power
System Fault Diagnosis through Multi-Agent System Technology. In Proceedings of the
Hawaii International Conference on System Sciences. 2004.

	Introduction
	KARMEN Overview
	KARMEN Architecture
	FlexFeed Agent Networking Framework
	KAoS Policy Services
	OWL Ontology Representation and Reasoning

	Process Monitoring
	Describing Process Conditions
	Monitoring Capabilities
	User Notification

	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

