
7/22/16, 10:28 AMKAoS: An Open Agent Architecture

Page 1 of 19http://ksi.cpsc.ucalgary.ca/KAW/KAW96/bradshaw/KAW.html

KAoS: An Open Agent Architecture
Supporting Reuse, Interoperability, and Extensibility

Jeffrey M. Bradshaw
Research and Technology, Boeing Information and Support Services

P.O. Box 3707, M/S 7L-44, Seattle, WA 98024, (206) 865-6086
jbrad@redwood.rt.cs.boeing.com

Abstract

The long-term objective of the KAoS (Knowledgeable Agent-oriented System) agent architecture is to
address two major limitations of current agent technology: 1. failure to address infrastructure, scalability, and
security issues; and 2. lack of semantics and extensibility of agent communication languages. The first
problem is addressed by taking advantage of the capabilities of commercial distributed object products
(CORBA, DCOM, Java) as a foundation for agent functionality, and supporting collaborative research and
statndards-based efforts to resolve agent interoperability issues. The second problem is addressed by
providing an open agent communication meta-architecture in which any number of agent communication
languages with their accompanying semantics could be accommodated. Unlike most agent communication
architectures, KAoS explicitly takes into account not only the individual message, but also the various
sequences of messages in which it may occur. Shared knowledge about message sequencing conventions
(conversation policies) enables agents to coordinate frequently recurring interactions of a routine nature
simply and predictably.

1. INTRODUCTION

1.1. The Promise of Software Agents

Current trends have made it clear that automation of dynamic, real-time environments will dramatically
increase in the coming decades. The complexity, real-time constraints, and distributed nature of such tasks
require that software not merely respond to requests for information but intelligently anticipate, adapt, and
actively seek ways to support users. Not only must these systems assist in coordinating tasks among humans,
they must also help manage cooperation among distributed programs.

Software agents have been proposed as one way to help people better cope with the increasing volume and
complexity of information and computing resources (Bradshaw, 1996) . Researchers are hopeful that this
approach will help restore the lost dimension of individual perspective to the content-rich, context-poor world
of the next decade. What will such agents do? At the user interface, they will work in conjunction with
compound document frameworks and document management tools to select the right data, assemble the
needed components, and present the information in the most appropriate way for a specific user and situation.
Behind the scenes, agents will take advantage of distributed object management, database, workflow,
messaging, transaction, searching, indexing, and networking capabilities to discover, link, and securely
access the appropriate data and services.

1.2. Limitations of Current Approaches

While several approaches to agent technology are showing significant promise, many critical issues remain



7/22/16, 10:28 AMKAoS: An Open Agent Architecture

Page 2 of 19http://ksi.cpsc.ucalgary.ca/KAW/KAW96/bradshaw/KAW.html

unsolved. For one thing, agents created within one agent framework can seldom communicate with agents
created within another.

Semantics. KQML has been proposed as a standard communication language for distributed agent
applications (Finin, Labrou, & Mayfield, 1996; Genesereth, 1996) . The core concept is that agents
communicate via “performatives”, by analogy with human performative sentences and speech acts (e.g., “I
hereby request you to send me file ABC.TEX”). Unfortunately, KQML developers have not yet reached full
consensus on many issues. Agent designers are free to add new types of performatives to the language.
However, there exist a number of confusions in the set of performatives supplied by KQML and no
constraints are provided to agent designers on what can be a performative (Cohen & Levesque, 1996) .
Without a clearly-defined semantics of individual performatives as they are employed within particular types
of agent-to-agent dialogue, developers cannot be sure that the communication acts their agents are using will
have the same meaning to the other agents with whom they are communicating. Such a semantics is needed
to determine the appropriateness of adding new performatives to a particular agent communication language,
and to define their relationship to preexisting ones.

Infrastructure, scalability, and security. In addition to the current limitations of agent communication
languages, the potential for large-scale, cross-functional deployment of general purpose agents in industrial
and government settings has been hampered by insufficient progress on infrastructural, architectural, security,
and scalability issues. Considerable research has been done on these issues by the distributed computing
community, and in some cases commercial products exist that could address many of them, yet up till now
relatively little effort has been made to incorporate these technologies into agent development frameworks.

The current lack of standards and supporting infrastructure has prevented the thing most users of agents in
real-world applications most need: agent interoperability (Gardner, 1996; Virdhagriswaran, Osisek, &
O’Connor, 1995) . A key characteristic of agents is their ability to serve as universal mediators, tying together
loosely-coupled, heterogeneous components-the last thing anyone wants is an agent architecture that can
accommodate only a single native language and a limited set of proprietary services to which it alone can
provide access.

1.3. KAoS: An Agent Architecture for Reuse, Interoperability, and Extensibility

To address some of these problems, we are working in partnership with Seattle University to develop KAoS
(Knowledgeable Agent-oriented System), an open distributed architecture for software agents (Bradshaw,
Dutfield, Benoit, & Woolley, 1996) . Our experience with KAoS to date leads us to believe that an approach
of this type can become a powerful and flexible basis either for implementing diverse types of agent-oriented
systems, or for interoperation with non-KAoS agent frameworks.

Providing infrastructure, scalability, and security through a foundation of distributed object
technology. To the extent KAoS can take advantage of architectures such as CORBA, we can concentrate our
research efforts on the unique aspects of agent interaction rather than on low-level distributed computing
implementation issues. CORBA provides a means of freeing objects and agents from the confines of a
particular address space, machine, programming language, or operating system (Betz, 1994) . The Interface
Definition Language (IDL) allows developers to specify object interfaces in a language-neutral fashion.
Object Request Brokers (ORBs) allow transparent access to these components and services without regard to
their location. The CORBA 2.0 specification extends the architecture to deal with the problem of
interoperability between ORBs from different vendors. A set of system services is bundled with every ORB,



7/22/16, 10:28 AMKAoS: An Open Agent Architecture

Page 3 of 19http://ksi.cpsc.ucalgary.ca/KAW/KAW96/bradshaw/KAW.html

and an architecture for “common facilities” of direct use to application objects is being defined. Among these
common facilities will be a compound document facility based on an enhanced version of the CI Labs
OpenDoc specification (Orfali, Harkey, & Edwards, 1995) .
Our collaborations with SU have produced increasingly sophisticated versions of KAoS that are designed to
take advantage of the capabilities of commercial distributed object products as a foundation for agent
functionality. To date, we have investigated the use of two object request broker (ORB) products: IBM’s
System Object Model (SOM) (Campagnoni, 1994) , and Iona’s Orbix. We have also explored agent
interaction with Microsoft Component Object Model (COM) underlying OLE (Brockschmidt, 1994) , and are
currently extending our investigations to Distributed COM, ActiveX, and Java.

We are encouraged by the increased cooperation among research teams and product development groups
working on agent technology. For example, we are closely following the progress of the Mobile Agent
Facility, currently being defined by the common facilities task force of the Object Management Group
(OMG) (Chang & Lange, 1996; Lange, 1996; Virdhagriswaran, Osisek, & O’Connor, 1995) . We have also
been active participants in the Hippocrene project of the Aviation Industry Computer-Based Training
Committee (AICC) (Bradshaw, Madigan, Richards, & Boy, 1993; Bradshaw, Richards, Fairweather,
Buchanan, Guay, Madigan, & Boy, 1993) and are working with members of the KQML subgroup of the
knowledge-sharing initiative to better understand and resolve interoperability issues. As research progresses,
we will continue to advocate industry-wide agent interoperability standards that are neutral with respect to
particular hardware platforms, operating systems, transport protocols, and programming languages.

Providing an extensible language semantics through an agent communication meta-architecture. It is
challenging to define an architecture that is general enough to be implemented in many different ways and
applied to diverse problems, yet specific enough to guarantee support for the requirement of agent
interoperability. A prime example of this difficulty is the CORBA specification, which required successive
refinement over a period of years until sufficient experience and consensus was attained that cross-vendor
interoperability could be assured.

The KAoS architecture dictates neither the particular transport-level protocol, nor the form in which content
should be expressed, and allows agents to be configured with whatever set of communication primitives is
desired. For this reason, it may be properly regarded as an open agent communication meta-architecture.

While not incompatible with languages such as KQML, KAoS provides a more flexible and robust
foundation for industrial-strength agents. We have optimized the architecture for extensibility so that new
suites of protocols and capabilities can be straightforwardly accommodated as needed. Our goal is not to lead
the invention of new languages and methods of agent interaction but rather to anticipate and easily adapt to
new research, standards, and domain-specific enhancements as they emerge in the future. If desired, for
example, the set of KQML “performatives” or the communication primitives of some future specialized agent
language could easily be implemented within KAoS.

2. OVERVIEW OF KAoS

2.1. KAoS Agents

A consistent structure provides mechanisms allowing the management of knowledge, commitments, choices,
and capabilities. These structures are shown in the box on the right of figure 1. Knowledge is defined as a
collection of facts and beliefs. Facts are simply beliefs about the agent and the environment in which the



7/22/16, 10:28 AMKAoS: An Open Agent Architecture

Page 4 of 19http://ksi.cpsc.ucalgary.ca/KAW/KAW96/bradshaw/KAW.html

agent has complete confidence. Facts or beliefs may be held privately or potentially made public (e.g., using a
blackboard). Desires represent the goals and preferences that motivate the agent. Intentions represent the
commitment of the agent to being in a state where it believes it is about to actually perform some set of
intended actions (Cohen & Lesvesque, 1990) . All agents are required to appropriately handle external
requests to provide information about their structure. An appropriate response might be sometimes simply, “I
am unable to give you the information you request.”

Figure 1. Structure and dynamics of agents. The black arrows represent state transitions, and the gray arrows
data flows.

While the KAoS architecture provides the “hooks” for implementing sophisticated agents based on these
structures and related mechanisms, it does not require that agents use these hooks in an “intelligent” fashion.
The minimal requirement is that agents be able to carry out successful conversations related to services they
are requesting or ones which they have advertised-the determination of the mechanisms by which this is
accomplished is left to the agent designer.

Capabilities are the services or functions that an agent can provide as defined in specific extensions to the
generic agent implementation. Our goal is to allow as much flexibility as possible in how agent capabilities
are defined. For example, on the Windows platform, generic agents are currently implemented as OLE
servers, and on the Macintosh platform generic agent functionality is exposed through Apple Events. A Java
implementation of KAoS is currently being designed. Because KAoS relies on these popular messaging
schemes for communication with the generic agent, agent capabilities can be defined or extended
straightforwardly using any combination of standard programming languages, general-purpose scripting
languages (e.g., AppleScript, Visual Basic, Tcl, Perl, JavaScript) and declarative logic-based programming
languages (e.g., KIF, Prolog). We see this kind of extensibility as being a positive step toward the eventual
(more ambitious) goal of powerful visual end-user authoring environments wherein complete agents can be
defined.

Each agent goes through the equivalent of birth, life, and death. At birth, agents instantiated and initialized
with some amount of innate structure. During their lives, agents go through a continuous cycle of reading,
processing, and sending messages. Agent death poses special problems. Depending on the application, it may
be necessary to include domain-specific procedures for dealing with it. These may include notification of
other agents, transfer of any pending commitments, or transfer of knowledge. KAoS agents that are declared



7/22/16, 10:28 AMKAoS: An Open Agent Architecture

Page 5 of 19http://ksi.cpsc.ucalgary.ca/KAW/KAW96/bradshaw/KAW.html

as persistent must be able to go into a form of “suspended animation” (called cryogenic state). Each persistent
agent is responsible for saving the aspects of its structure required allow it to be reactivated when required.
The process of saving and restoring structure may also be simple or complex, depending on the situation.

Each agent contains a generic agent instance, which implements as a minimum the basic infrastructure for
agent communication (figure 2). Specific extensions and capabilities can be added to the basic structure and
protocols through standard object-oriented mechanisms. Mediation agents provide an interface between a
KAoS agent environment and external entities, resources, or agent frameworks. The Domain Manager
controls the entry and exit of agents in a domain according to policies set by the domain administrator. The
Matchmaker can access information about the location of the generic agent instance for any agent that has
advertised its services. Proxy agents extend the scope of the agent-to-agent protocol beyond a particular
domain.

Figure 2. Communication between generic agent instances

2.2. Agent Communication

Conversations. Unlike most agent communication architectures, KAoS explicitly takes into account not only
the individual message in isolation, but also the various sequences in which a particular message may occur.
We believe that social interaction among agents is more appropriately modeled when conversations rather
than isolated illocutionary acts are taken as the primary unit of agent interaction. As Winograd and Flores
observe:

The issue here is one of finding the appropriate domain of recurrence. Linguistic behavior can be
described in several distinct domains. The relevant regularities are not in individual speech acts
(embodied in sentences) or in some kind of explicit agreement about meanings. They appear in
the domain of conversation, in which successive speech acts are related to one another
(Winograd & Flores, 1986, p. 64) .

We define a conversation to be a sequence of messages between two agents, taking place over a period of
time that may be arbitrarily long, yet is bounded by certain termination conditions for any given occurrence.
Conversations may give rise to other conversations as appropriate. Messages occur only within the context of
conversations. Each message is part of an extensible protocol common to the agents participating in the
conversation. The content portion of a message encapsulates any semantic or procedural elements
independent of the conversation policy itself.



7/22/16, 10:28 AMKAoS: An Open Agent Architecture

Page 6 of 19http://ksi.cpsc.ucalgary.ca/KAW/KAW96/bradshaw/KAW.html

Conversation policies. A major issue for designers of agent-oriented systems is how to implement policies
governing conversational and other social behavior among agents. Walker and Wooldridge (Walker &
Wooldridge, 1995) have termed the two major approaches: off-line design, in which social laws are hard-
wired in advance into agents, and emergence, where conventions develop from within a group of agents.

For performance reasons, and also because the deeper logic of conversations has yet to be satisfactorily
articulated by researchers, our current architecture provides only for an off-line approach. Just as the KQML
agent protocol embodies a separate linguistic messaging layer allowing agents to circumvent the
inefficiencies that otherwise would be imposed by the contextual independence of KIF’s semantics
(Genesereth, 1996) , KAoS provides an explicit set of mechanisms encoding message-sequencing
conventions that, in most situations, frees agents from the burden of elaborate inference that otherwise might
be required to determine which next message types are appropriate.

Shared knowledge about message sequencing rules enables agents to coordinate frequently recurring
interactions of a routine nature simply and predictably. However nothing in the architecture precludes a more
sophisticated appraoch, based on an emergent model of agent communication and the notions of joint
intention and planning. Cohen and Smith have begun the development of a semantics of agent
communication whtat would allow just such an approach (Cohen & Levesque, 1996) , and in the future we
expect to build on their work to demonstrate how agent communication protocols can be developed and
analyzed using such a semantics.

Messages, verbs, and suites. Facilities for implementing conversation policies and carrying out
conversations are built into the generic agent capability. A starter set of conversation policies (the Core suite)
is also provided, but can be replaced or extended as needed. The conversation policies of the default core
suite currently consist of Inform, Offer, Request, Conversation for Action (CFA), and Query .

Inform. The simplest case of a conversation is Agent A sending a single message to Agent B with the “no
response required” option enabled (figure 3). In such a case, Agent B terminates its side of the conversation
“silently” and the conversation policy reduces to the kind of atomic message sending encountered in most
agent communication languages. A slightly more complex example would be when Agent A requires Agent B
to acknowledge receipt of the information. This it does by including a “response required” parameter within
the initial message.

Figure 3. The Inform conversation policy

Offer. Whereas the effect of an inform message is immediate, an offer is future-oriented. Hence an offer is
something that can be declined, while it is impossible to decline to be informed once one already has
processed the content of an inform message (figure 4). As an example, a monitoring agent could initiate an
Offer conversation with another agent that it perceived could benefit from its assistance.



7/22/16, 10:28 AMKAoS: An Open Agent Architecture

Page 7 of 19http://ksi.cpsc.ucalgary.ca/KAW/KAW96/bradshaw/KAW.html

Figure 4. The Offer conversation policy

Request. The conversation policy for a Request is shown in figure 5. This kind of conversation policy (as
opposed to the Conversation for Action policy below) is best suited to an agent that known to reliably fulfill
its commitments, or for which the consequences of its failure to do so are slight. In the simplest case, Agent
B can simply perform the request of Agent A, with an optional acknowledgment. The request may also be
declined or countered by Agent B. Agent A can in turn counter again, accept the request, or withdraw it at
any time. Once the request has been carried out by B, it sends the report satisfied message to A with results
returned in the content portion.

Figure 5. The Request conversation policy

We note here that there is a tradeoff between economy of verb types and “naturalness” of expression within a
given conversation policy. For example, one could argue that acknowledge (in the Offer policy) and report
satisfied (in the Request policy) should be replaced by simple inform messages. On the other hand, it is clear
that the use of the more specific verbs makes it easier to infer the function of the messages in the context of
their respective conversation policies.

This tradeoff between economy and naturalness of expression is an issue which cries out for additional study.
Based on our informal analysis, we believe that the most common types of more specific verbs can be
straightforwardly derived from the formal definitions of a small number of basic speech acts.

Conversation For Action. We regard Winograd and Flores’ Conversation For Action (CFA) (Winograd &
Flores, 1986) as a more complex variant of request (figure 6). We include a slightly modified version of their
Conversation For Action in our core set of conversation policies, since it seems well-suited to many of the
requests both that agents make of each other and that humans make of agent systems. 

In contrast to the Request conversation policy, Conversation for Action provides a more complex mechanism
to handle commitments that persist over time and may not be reliably fulfilled. Additional conversations may
well be generated, as the agent negotiates with others to fulfill its commitments. The important feature to note



7/22/16, 10:28 AMKAoS: An Open Agent Architecture

Page 8 of 19http://ksi.cpsc.ucalgary.ca/KAW/KAW96/bradshaw/KAW.html

in the state-transition diagram is that communication about commitments is handled explicitly: a definite
promise must be communicated if B accepts A’s initial request, and if B does not intend to fulfill its
commitment, it must send a renege message to A. A in turn must declare explicitly that it either will accept or
decline the report from B that the request has been satisfied.

Figure 6. The Conversation For Action (CFA) conversation policy

Asynchronies in conversations. The implementation of a conversation policy must account for asynchronies
in conversations (Bowers & Churcher, 1988) . The major asynchrony of concern is between the time of
transmission of a particular message and the time of response.

To handle asynchronies, a conversation policy must be designed to prevent a conversation entering a state
from which it cannot process an incoming message. An asynchrony will manifest itself as an attempt to effect
an invalid transition on a conversation, and should occur only when more than one participant in a
conversation can instigate a valid transition from a state. For example, in figure 12, transitions from state 2
allow messages from either A or B. Each transition from such a state will conform to one of the following
rules:

the transition leads directly to a final state, in which the conversation will no longer exist to process
another incoming message. For example, B:A renege in figure 6 leaves the conversation in state 6, from
which an A:B withdraw is irrelevant.
the transition leads to a non-final state from which any message from another participant valid in the
originating state is still valid-for example, because A:B withdraw is valid from both states 1 and 2 in
figure 12, it will have the desired effect even if B:A promise moves the state from 1 to 2.

Conversation policy implementation requirements. The agent initiating a conversation specifies the opening
verb and a conversation policy for a conversation, and the responding agent must indicate in return that it is
capable of processing both the opening verb and the conversation policy. In implementing a conversation
policy, all agents which participate in a conversation will-by definition-correctly generate and interpret all
subsequent messages in the conversation.

The capability to implement a conversation policy entails:

recognizing incoming messages correctly
generating appropriate outgoing messages
making the correct state transitions

Suites. A suite provides a convenient grouping of conversation policies that support a set of related services.



7/22/16, 10:28 AMKAoS: An Open Agent Architecture

Page 9 of 19http://ksi.cpsc.ucalgary.ca/KAW/KAW96/bradshaw/KAW.html

The default Core suite of initial verbs and conversation policies is normally available to all agents. In addition
to the Core suite, special agents such as the Matchmaker would be expected to process at least one additional
set of conversations (i.e., the Matchmaker suite).

The table in figure 7 below represents a conceptual model of the relationship between the basic elements of
the Core suite, omitting the Query conversation policy which is introduced in section 3.4.6 below.
Information about the relationship between a verb and a conversation policy is shown within the cells: an I
(initial) shows that the verb may act as an initial verb and specify the conversation policy for a new
conversation; an S (subsequent) shows that the verb may be used during the course of an existing
conversation. An S in parentheses indicates that the use of the verb within a given conversation policy is
optional in some contexts (e.g., acknowledgment of inform messages is not always required).

Figure 7. The basic elements of the Core suite, omitting Query

Rôles. In a typical conversation, the agent requesting a service will select the suite to be used for the
conversation. The agent providing the service must have already advertised the service and the set of suites
which it requires. Having done so, the two agents may then participate in a conversation, using an appropriate
conversation policy in the selected suite.

Since a service-providing agent cannot make its services known to the Matchmaker without first advertising
their existence, and since a service-requesting agent cannot access the required services for the first time
without having the Matchmaker recommend an appropriate agent, every agent must have access to the
Matchmaker suite (described below). However, there is an important difference between non-Matchmaker
and Matchmaker agents in how they will participate in such conversations: the former will only need to know
how to initiate advertising and recommending conversations in the rôle of a service requester, while the latter
must how to process them as a service provider.

Rôles serve to partition the available messages, such that a given agent need not implement verbs and
conversation policies in ways that it will never use. For example, most KAoS agents will be capable of
playing advertiser or requester rôles in conversations with the Matchmaker, but only the Matchmaker agent
itself will need to implement capabilities and roles relevant to the processing of advertise and recommend
messages generated by others.

Rôles and suites. A suite maintains the permissible combinations of initial verb, conversation policy, and
rôle. It must specify at least two rôles (e.g., one for the initiator of the conversation and one for the
respondent). Where appropriate, agents may be permitted to play more than one possible rôle for a given
conversation policy. For example, a Matchmaker may act as a service provider during the course of
processing a recommend conversation for a requesting agent. However, in order to carry out the request, it
may subsequently act in the rôle of a service requester by initiating a recommend conversation with another
Matchmaker in order to have its assistance in locating service providers consistent with the original
recommend request.
From figure 7, we see that the Core suite provides the following combinations of initial verb, conversation
policy, and rôle for agents which initiate conversations:

inform, Inform, informer
offer, Offer, offerer
request, Request, requester



7/22/16, 10:28 AMKAoS: An Open Agent Architecture

Page 10 of 19http://ksi.cpsc.ucalgary.ca/KAW/KAW96/bradshaw/KAW.html

request, CFA, requester

The initial verb of a conversation determines the rôle for the agent originating the conversation. For example,
any agent generating an inform or request verb necessarily acts as an informer or requester, and the agent
receiving either of these messages will automatically adopt the rôle or rôles needed to process these incoming
messages.

Requirements for conversation initiators and respondents. To allow communication with other agents,
each agent must be designed to support one or more conversations. Being a conversation initiator or
respondent requires an agent to do the following:

for one or more combinations of suite, conversation policy, initial verb, and rôle:
implement the conversation policies
implement the capabilities necessary to process messages appropriate to its rôles in the conversations
if an initiator, generate the initial verb.

Requirements for agents providing a suite of services. Providing a suite of services entails that an agent
must be capable of adopting an appropriate rôle for each conversation in that suite. In other words, an agent
must do the following:

implement all the suite’s conversation policies
implement the capabilities necessary to process messages appropriate to its rôles as a service provider
within instances of those conversation policies.

Example of Adding a New Conversation Policy: Query. Though the starter set of conversation policies
defined in KAoS seems adequate for many common sorts of agent interaction, there will often be a need to
add new ones. We will illustrate how this is done by adding a Query conversation policy to complete the
partial Core suite shown in figure 7. The query verb can initiate either a CFA conversation policy whose state
transitions are identical except for the initial verb, or a new Query conversation policy (figure 8). The major
difference between the Query and Request conversation policies is that the B:A report satisfied message is not
optional, and it must by definition contain some result (i.e., a response to the query) as part of its content.

Figure 8. The Query conversation policy

Consistent with the state transition diagram, the table below shows that the query conversation protocol is
identical to the request conversation protocol except that the use of the report satisfied verb is required rather
than optional (figure 9). The shaded cells show what has been newly added: one conversation policy, one



7/22/16, 10:28 AMKAoS: An Open Agent Architecture

Page 11 of 19http://ksi.cpsc.ucalgary.ca/KAW/KAW96/bradshaw/KAW.html

verb, and the participation information.

Figure 9. Completing the Core suite by adding the Query conversation policy

Example of Conversation Policy Reuse: The Matchmaker Suite. One challenge addressed by the KAoS
architecture is how to enable developers and consumers of agent services to add a new suite with minimal
effort. For example, if a request for a new service could be made by reusing an existing conversation policy
combined with a new initial verb, developers could often be spared the trouble of creating a whole new
conversation policy and making it available to each potential requester. In the simplest case, any agent
desiring access to the service which had already implemented the conversation policy being reused would
simply have to extend its data about supported suites with a new initial verb. In many cases, not only the
conversation policy but also many of the agent-specific handlers that process the messages of the
conversation policy (e.g., countering) could be reused.

As an example, the Matchmaker suite is shown as the shaded area of figure 10. The suite is implemented by
combining existing conversation policies with three new initial verbs: retire, advertise, and recommend. The
advertise message is sent to the Matchmaker by any agent wishing to offer services. It uses the Offer
conversation policy with a more specific verb. The retire message is used by an agent to withdraw its
services. It uses the Inform conversation policy. The recommend message is used to request the
Matchmaker’s help in finding an agent to perform some service. Recommend uses the Query conversation
policy. 



7/22/16, 10:28 AMKAoS: An Open Agent Architecture

Page 12 of 19http://ksi.cpsc.ucalgary.ca/KAW/KAW96/bradshaw/KAW.html

Figure 10. The Core and Matchmaker suites.

The Matchmaker suite thus provides the following combinations of initial verb, conversation policy, and rôle
for agents which originate conversations:

advertise, Offer, advertiser
retire, Inform, retiree
recommend, Query, requester

3. APPLICATIONS

Initial prototypes and agent utilities. Early versions of KAoS were used to build demonstrations of agent-
oriented programming and simulations of various agent activities. The first prototype implemented a multi-
agent version of a battleship game, defining specializations of the generic agent class for one or many
cooperating ship captains on each team, a game board Matchmaker, an Excel spreadsheet mediation agent,
and a referee (Atler, Bingle, Cooke, Morgan, Duine, & Zonczyk, 1994; Tockey, Rosenthal, Rosman LaFever,
Jasper, George, Woolley, Bradshaw, & Holm, 1995) . A maintenance performance support prototype
demonstrated how mediation agents could help coordinate the interaction between airline maintenance
mechanics and their supervisors and adapt the presentation of task-related information through a dynamic
OpenDoc component interface (Bos, Boyer, Dutfield, & Jones, 1995) . A scheduling environment prototype
based on Microsoft OLE technology showed how KAoS could be used to implement assistants to aid in the
process of scheduling meetings and meeting rooms (Barker, Benoit, Tomlinson, & Landon, 1995) .

We have created an agent construction kit prototype based on Microsoft Foundation Classes for the Windows
platform, and a visual interface construction kit prototype using HyperCard on the Macintosh. We created a
conversation monitor to allow particular sets of agent conversations to be logged, passively monitored, or



7/22/16, 10:28 AMKAoS: An Open Agent Architecture

Page 13 of 19http://ksi.cpsc.ucalgary.ca/KAW/KAW96/bradshaw/KAW.html

intercepted. A Service Viewer provides a view on the services currently registered with a Matchmaker, and an
Agent Structure Viewer allows one to inspect the persistent state of a particular agent.

Gaudi intelligent maintenance performance support system. The Boeing Company is exploring the use of
portable airplane maintenance aids (PMA) to provide training and support to customers (Bradshaw, Richards,
Fairweather, Buchanan, Guay, Madigan, & Boy, 1993; Guay, 1995) . A new version of KAoS is being
incorporated into one such prototype of an intelligent performance support system (Bradshaw, Robinson, &
Jeffers, 1995) . The system, named Gaudi, is designed around the actual processes, activities, and resources
of the work environment. It is intended to directly and actively support necessary tasks, adapting information
to the requirements of the user and situation.

Seven requirements guide Gaudi’s evolution in the long-term:

1. Think tasks, not documents. The current transition in desktop computing is from an
application-centric to a document-centric paradigm. Distributed component integration
technologies (e.g., WWW, OpenDoc, ActiveX, Java) are fueling this trend. However, as
component integration technologies increase in power and flexibility, user interfaces will move
beyond a document-centric approach to a task-centric one. Large undifferentiated data sets will
be restructured into small well-described elements, and complex monolithic applications will be
transformed into a dynamic collection of simple parts, driving a requirement for new intelligent
technology to put these pieces back together in a way that appropriately fits the context.

2. Pave where the path is. This phrase comes from the old story of the college planner who built
a new campus with no paths built in at all (Brand, 1994, p. 187) . After the first winter, she
photographed where people made paths in the snow between the buildings, and paved
accordingly in the spring. The lesson is that some elements of the design of the system need to be
postponed, and learned instead through actual experience with the user. As part of a collaboration
with NASA-Ames, we are working to incorporate their adaptive engine into Gaudi. The adaptive
component is described in more detail in section 5.3 below.

3. Make all parts replaceable. The idea is that future users of such a system would be able to
easily add to or replace the software applications Boeing provides with applications of their own
choosing in conjunction with their own or Boeing-provided data. A migration path from legacy
monolithic applications to distributed component-based software must also be provided.

4. Link to anything (without requiring markup). SGML and HTML-based software typically
provides for hyperlinking based on embedded markup of textual data. However embedded
markup becomes problematic (Malcolm, Poltrock, & Schuler, 1991) :

where context-sensitive linking is needed, since appropriate links may vary according to
the user, task, or situation;
where linking needs to be added after the fact to data provided in a read-only format such
as CD-ROM, or
where the unpredictable nature of the content requires dynamic query-based links rather
than static pre-determined ones.

Additionally, new techniques need to be developed to allow linking to complex data elements



7/22/16, 10:28 AMKAoS: An Open Agent Architecture

Page 14 of 19http://ksi.cpsc.ucalgary.ca/KAW/KAW96/bradshaw/KAW.html

such as individual frames in a video stream or pieces of 3D geometry. We have implemented an
agent-assisted external linking facility that implements dynamic links without markup.

5. Run it everywhere. This requirement underlines the necessity of developing a cross-platform
approach (i.e., Mac, Windows, Unix). It also requires that progress in wearable and mobile
computing platforms and networking approaches (such as developments in wireless
communication) be taken into account.

6. Pull data from anywhere. Rather than delivering a closed-box containing a static set of
Boeing data, users must be able to dynamically access and integrate data that may reside on a
networked server. This data may include anything from a private airline spares database, to a
Boeing-managed media server for digital video, to other sources of information residing
anywhere on the public Internet. A special requirement is the ability to interoperate with object
request brokers and message-based protocols.

7. Let your agents handle the details. The fragmentation of data into smaller-grain-sized
objects and the decomposition of large applications into sets of pluggable components could
prove a nightmare for users if there is no support to help them put all the pieces together again.
KAoS agents will enable intelligent interoperability between heterogeneous system components,
and will help filter and present the right information at the right time in the most appropriate
fashion to users who would otherwise be overwhelmed by a flood of irrelevant data.

4. ISSUES AND FUTURE DIRECTIONS

Mobile agents. WWe are working on the issue of agent mobility on two fronts: 1) allowing mobile users of
small computing devices to interact with a KAoS agent domain residing on a remote machine, 2) integrating
the KAoS architecture with mobile agent approaches that permit the physical migration and secure, managed
execution of agent programs on “guest” hosts not belonging to the sender of the agent.

With regard to the first issue, we have completed a prototype of a mediation agent serving a mobile client of
the Gaudi application by a wireless connection. In the prototype, agents involved in a currently running
session can be transferred from one client to another at the request of a user. Though the current session
context is preserved in the transfer, the agents are responsible for adapting to the characteristics of the client
platform as required. For example, a user can transfer a session running on a desktop with a high-resolution
display to a laptop with a low-resolution display. The user interface will adapt to the new hardware
configuration, and hyperlinks not appropriate for the new client (e.g., high-resolution multimedia) will be
filtered out automatically. A serial connection is maintained only as needed between the mobile client and the
machine on which KAoS is running. To preserve power and bandwidth, the connection is an intermittent
rather than an exclusive, continuous one.

With regard to the second issue, we are beginning work on a Java implementation of KAoS and on
enhancements to the KAoS OLE/ActiveX implementation to take advantage of DCOM. Agents will be able
to transport themselves in two ways: 1) by transferring an entire agent from one domain to another
(teleportation), or 2) by transferring only a mobile portion of the agent’s capabilities (e.g., as an applet) to a
different host (telesthesia). In this second scenario, the mobile portion of the agent could execute on remote
hosts while remaining in communication with its generic agent in the home domain. Agent communication
with other programs may be facilitated by the ability of agents to plug into an open protocol bus hosted as



7/22/16, 10:28 AMKAoS: An Open Agent Architecture

Page 15 of 19http://ksi.cpsc.ucalgary.ca/KAW/KAW96/bradshaw/KAW.html

part of client or server Web application services (e.g., LiveConnect on NetScape). We will incorporate
industry standards for agent transfer protocols as they emerge (e.g., the dispatch, retract, and fetch verbs
defined in (Lange, 1996) ). 

Formalizing semantics and modeling dialogue as a joint activity. To date, we have attempted no formal
description of the semantics of agent communication. Ongoing progress in such formalizations is summarized
by Cohen and Levesque (Cohen & Levesque, 1996) and Labrou and Finin (Labrou & Finin, 1994) . We
anticipate continued collaboration with these and other researchers as this work moves forward.

A more general issue concerns the manner in which such a set of social laws (e.g., conversation policies,
collaboration strategies, policies governing reconsideration of conventions) comes to exist within an agent
society (Durfee, Gmytrasiewicz, & Rosenschein, 1994; Jennings, 1993; Shoham & Tennenholtz, 1992;
Wooldridge & Jennings, 1994) . We have noted above the distinction between the approaches of off-line
design and emergence of agent social behavior. While the off-line design of social laws generally makes for
simpler design and more predictable agent behavior, we see value in allowing for emergent behavior where
the situation demands (e.g., complex negotiations (Zlotkin & Rosenschein, 1994) , teamwork (Cohen &
Levesque, 1991) ).

For example, Cohen and Levesque (Cohen, 1994) discuss the limitations of “state models” of conversations,
such as those we have proposed as part of the current KAoS architecture. While many of the problems they
describe (nonliteral language, multifunctional utterances, etc.) are more important for human-human or
human-agent than for agent-agent interaction using a very restricted language, they make a good case that,
over the long term, “state model” (“dialogue grammar”) approaches need to function in concert with more
powerful plan-based approaches that require agents to infer one another’s intentions at runtime.

The KAoS architecture assumes that agents identify each other by the services they advertise; such an
environment need not treat random encounters between unrelated agents as a primary concern. Accordingly,
the concept of “joint intention” is dealt with only implicitly by considering at design time the services and the
rules within conversation policies associated with those services. Increasing the flexibility and power of
agents will require elaboration of joint action theory.

Cohen and Smith have begun the development of a semantics of agent communication that would allow the
rigorous analysis of conversation policies (Cohen & Levesque, 1996; Smith & Cohen, 1995) . Among other
things, they have demonstrated that the behavior of the state transition model of the Winograd and Flores
CFA policy is consistent with an emergent behavior of agents operating according to the principles in their
model of interagent communication. The goal would be to predict the structure of finite-state models of
interagent conversations as used in agent architectures such as KAoS. Such a strategy parallels the approach
of Rosenschein, who designed a compiler that generates finite state machines whose internal states can be
proved to correspond to certain logical propositions about the environment (Kaelbling & Rosenschein, 1990;
Rosenschein, 1985) .

5. CONCLUSIONS

The KAoS architecture will succeed to the extent that it allows agents to carry out useful work while
remaining simple to implement. Although it is still far from complete, our experience with the current KAoS
architecture has shown it to be a powerful and flexible basis for diverse types of agent-oriented systems. The
strength of the architecture derives from several sources:



7/22/16, 10:28 AMKAoS: An Open Agent Architecture

Page 16 of 19http://ksi.cpsc.ucalgary.ca/KAW/KAW96/bradshaw/KAW.html

it is built on a foundation of distributed object technology and is optimized to work with component
integration architectures such as OpenDoc, OLE, and Java and with distributed object services such as
those provided by CORBA and DCOM;
it supports structured conversations which:
preserve and make use of the context of agent communication at a higher level than single messages,
allow differential handling of messages depending on the particular conversation policy and the place
in the conversation where the message occurs,
permit built-in generic handlers for common negotiation processes such as countering;
it allows the language of inter-agent communication to be extended in a principled manner, allowing
verbs and conversation policies to be straightforwardly reused, adapted, or specialized for new
situations;
it groups related sets of conversation policies into suites supporting a coherent set services;
it provides facilities for service names, which are registered by agents offering services;
it provides facilities for agent names, which uniquely identify an agent as long as it persists;
it is appropriate for a wide variety of domains and implementation approaches and is platform- and
language-neutral;
it supports simple agents to be straightforwardly implemented, while providing the requisite hooks to
develop more complex ones;
it supports both procedural and declarative semantics;
it is designed to interoperate with other agent frameworks and protocols either by extending or
replacing the core agent-to-agent protocol or by defining specialized mediation agents.

We are optimistic about the prospects for agent architectures built on open, extensible object frameworks and
look forward to the wider availability of interoperable agent implementations that will surely result from
continued collaboration.

References

Apple_Computer (1993). Inside Macintosh: Interapplication Communication., Reading, MA: Addison-
Wesley.

Atler, D., Bingle, M., Cooke, T., Morgan, J., Duine, D. V., & Zonczyk, M. (1994). AgONy! Battleship
Documentation. Seattle, WA: Seattle University Department of Software Engineering, June 9, 1994.

Barker, D., Benoit, P., Tomlinson, J., & Landon, S. (1995). KAoS CORBA Design Document. Seattle, WA:
Seattle University Department of Software Engineering, May 30, 1995.

Betz, M. (1994). Interoperable objects. Dr. Dobb’s Journal(October), 18-39.

Bos, M., Boyer, R., Dutfield, S., & Jones, E. J. (1995). TAINT OpenJob Design Document. Seattle, WA:
Seattle University Department of Software Engineering, May 30, 1995.

Bowers, J., & Churcher, J. (1988). Local and global structuring of computer-mediated representation:
Developing linguistic perspectives on CSCW in COSMOS. Proceedings of the Conference on Computer-
supported Cooperative Work, . Portland, OR, , ACM ,

Bradshaw, J. M. (Ed.). (1996). Software Agents. Cambridge, MA: AAAI/MIT Press.



7/22/16, 10:28 AMKAoS: An Open Agent Architecture

Page 17 of 19http://ksi.cpsc.ucalgary.ca/KAW/KAW96/bradshaw/KAW.html

Bradshaw, J. M., Dutfield, S., Benoit, P., & Woolley, J. D. (1996). KAoS: Toward an industrial-strength
generic agent architecture. In J. M. Bradshaw (Ed.), Software Agents. (pp. in preparation). Cambridge, MA:
AAAI/MIT Press.

Bradshaw, J. M., Madigan, D., Richards, T., & Boy, G. A. (1993). Emerging technology and concepts for
computer-based training. Proceedings of the Sixth Annual Florida AI Research Symposium (FLAIRS ‘93), .
Ft. Lauderdale, FL, , ,

Bradshaw, J. M., Richards, T., Fairweather, P., Buchanan, C., Guay, R., Madigan, D., & Boy, G. A. (1993).
New directions for computer-based training and performance support in aerospace. Proceedings of the Fourth
International Conference on Human-Machine Interaction and Artificial Intelligence in Aerospace., . Toulouse,
France, 28-30 September, , ,

Bradshaw, J. M., Robinson, T., & Jeffers, R. (1995). Gaudi: An unfinished architecture for performance
support. P. C. Cacciabue (Ed.), Proceedings of the Fifth International Conference on Human-Machine
Interaction and Artificial Intelligence in Aerospace (HMI-AI-AS ‘5), (pp. in press). Toulouse, France, , ,

Brand, S. (1994). How Buildings Learn: What Happens after They’re Built., New York: Viking Penguin.

Brockschmidt, K. (1994). Inside OLE 2., Redmond, WA: Microsoft Press.

Campagnoni, F. R. (1994). IBM’s System Object Model. Dr. Dobb’s, Winter 1994/95, 24-28.

Chang, D. T., & Lange, D. B. (1996). Mobile agents: A new paradigm for distributed object computing on the
WWW. Proceedings of the OOPSLA 96 Workshop “Toward the Integration of WWW and Distributed Object
Technology”, . , , ,

Cohen, P. R. (1994). Models of dialogue. T. Ishiguro (Ed.), Cognitive Processing for Vision and Voice:
Proceedings of the Fourth NEC Research Symposium, (pp. 181-203). , , Philadelphia, PA: Society for
Industrial and Applied Mathematics ,

Cohen, P. R., & Lesvesque, H. J. (1990). Intention is choice with commitment. Artificial Intelligence, 42(3), .

Cohen, P. R., & Levesque, H. (1996). Communicative actions for artificial agents. In J. M. Bradshaw (Ed.),
Software Agents. (pp. in preparation). Cambridge, MA: AAAI/MIT Press.

Cohen, P. R., & Levesque, H. J. (1991). Teamwork. Technote 504. Menlo Park, CA: SRI International,
March.

DeMichelis, G., & Grasso, M. A. (1994). Situating conversations within the language/action perspective: The
Milan conversation model. R. Furuta & C. Neuwirth (Ed.), Proceedings of the Conference on Computer
Supported Cooperative Work, (pp. 89-100). Chapel Hill, NC, USA, , New York: ACM Press ,

Durfee, E. H., Gmytrasiewicz, P., & Rosenschein, J. S. (1994). The utility of embedded communications:
Toward the emergence of protocols. M. Klein & K. Sharma (Ed.), Proceedings of the Thirteenth International
Distributed Artificial Intelligence Workshop, (pp. 85-93). Seattle, WA, , Seattle, WA: Boeing Information and
Support Services ,

Finin, T., Labrou, Y., & Mayfield, J. (1996). KQML as an agent communication language. In J. M. Bradshaw



7/22/16, 10:28 AMKAoS: An Open Agent Architecture

Page 18 of 19http://ksi.cpsc.ucalgary.ca/KAW/KAW96/bradshaw/KAW.html

(Ed.), Software Agents. (pp. in preparation). Cambridge, MA: AAAI/MIT Press.

Gardner, E. (1996). Standards hold key to unleashing agents. Web Week, 5, April 29,

Genesereth, M. R. (1996). An agent-based framework for interoperability. In J. M. Bradshaw (Ed.), Software
Agents. (pp. in press). Cambridge, MA: AAAI/MIT Press.

Guay, R. L. (1995). Notebook simulations as electronic performance support tools for airline maintenance. N.
R. Hartley (Ed.), Proceedings of the Royal Aeronautical Society Flight Simulation Group Simulation in
Aircraft Maintenance Training Conference, . London, England, , ,

Jennings, N. R. (1993). Commitments and conventions: The foundation of coordination in multi-agent
systems. Knowledge Engineering Review, 8(3), 223-250.

Kaelbling, L. P., & Rosenschein, S. J. (1990). Action and planning in embedded agents. Robotics and
Autonomous Systems, 6(1-2), 35-48.

Labrou, Y., & Finin, T. (1994). A semantics approach for KQML-a general purpose communication language
for software agents. N. R. Adam, B. K. Bhargava, & Y. Yesha (Ed.), Proceedings of the Third International
Conference on Information and Knowledge Management, (pp. 447-455). Gaithersburg, MD, , New York: The
Association for Computing Machinery ,

Lange, D. B. (1996). Agent Transfer Protocol ATP/0.1 Draft 4. IBM Research, Tokyo Research Laboratory,
July 29.

Malcolm, K. C., Poltrock, S. E., & Schuler, D. (1991). Industrial strength hypermedia: Requirements for a
large engineering enterprise. Proceedings of the Third ACM Conference on Hypertext, . San Antonio, TX, , ,

Orfali, R., Harkey, D., & Edwards, J. (1995). Client/server components: CORBA meets OpenDoc. Object
Magazine, Maay, 55-59.

Robinson, M. (1991). Computer supported cooperative work: Case and concepts. In P. R. Hendriks (Ed.),
Groupware 1991: The Potential of Team and Organisational Computing. (pp. 59-75). Utrecht, The
Netherlands: SERC.

Rosenschein, S. J. (1985). Formal theories of knowledge in AI and robotics. New Generation Computing,
3(4), 345-357.

Shoham, Y., & Tennenholtz, M. (1992). On the synthesis of useful social laws for artificial agent societies.
Proceedings of the Tenth National Conference on Artificial Intelligence, (pp. 276-28?). San Jose, CA, , ,

Smith, I. A., & Cohen, P. R. (1995). Toward a semantics for a speech act based agent communications
language. T. Finin & J. Mayfield (Ed.), Proceedings of the CIKM Workshop on Intelligent Information
Agents, . Baltimore, MD, , ACM SIGART/SIGIR ,

Suchman, L. (1993). Do categories have politics? The language/action perspective reconsidered. Proceedings
of the Third European Conference on Computer-Supported Cooperative Work, (pp. 1-14). Milan, Italy, ,
Dordrecht, The Netherlands: Kluwer Academic Publishers ,



7/22/16, 10:28 AMKAoS: An Open Agent Architecture

Page 19 of 19http://ksi.cpsc.ucalgary.ca/KAW/KAW96/bradshaw/KAW.html

Tarrago, S. (1992). Gaudi., Barcelona, Spain: Editorial Escudo de Oro, S.A.

Tockey, S., Rosenthal, D., Rosman LaFever, M., Jasper, R., George, N., Woolley, J. D., Bradshaw, J. M., &
Holm, P. D. (1995). Implementation of the KAoS generic agent-to-agent protocol. Northwest AI Forum
(NAIF) Journal(Spring), .

Virdhagriswaran, S., Osisek, D., & O’Connor, P. (1995). Standardizing agent technology. ACM Standards
View, in press.

von Martial, F. (1992). Coordinating Plans of Autonomous Agents., Heidelberg, Germany: Springer Verlag.

Walker, A., & Wooldridge, M. (1995). Understanding the emergence of conventions in multi-agent systems.
V. Lessor (Ed.), Proceedings of the First International Conference on Multi-Agent Systems, (pp. 384-389).
San Francisco, CA, , Menlo Park, CA: AAAI/MIT Press ,

White, J. (1996). A common agent platform. (http://www.genmagic.com/Internet/Cap/w3c-paper.htm).
General Magic, Inc., 11 March.

Winograd, T., & Flores, F. (1986). Understanding Computers and Cognition., Norwood, N.J.: Ablex.

Wooldridge, M. J., & Jennings, N. R. (1994). Formalizing the cooperative problem solving process. M. Klein
& K. Sharma (Ed.), Proceedings of the Thirteenth International Distributed Artificial Intelligence Workshop,
(pp. 403-417). Seattle, WA, , Seattle, WA: Boeing Information and Support Services ,

Zlotkin, G., & Rosenschein, J. (1994). Rules of Encounter: Designing Conventions for Automated
Negotiation among Computers., Cambridge, MA: MIT Press.


