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Abstract 

In this chapter, we argue that interdependence relationships are the mechanism employed to 
actively manage the processes that assess trustworthiness of the technology and that enable 
accurate trust calibration by the people who use it. This work proposes a new model of risk-taking 
trust relationships. It emphasizes the critical role of context and the role of interdependence in the 
trust process. The work further proposes that interdependence relationships are the mechanism by 
which relational trust is established, developed and maintained. The proposed model is used to 
explain how Interdependence Analysis provides a contextual lens for interpreting trust and can be 
an effective tool for understanding and designing systems capable of actively managing trust 
through interdependence relationships. 

1! Introduction 

As technology continues to take on roles of greater scope and consequence, the issue of trust has 
moved increasingly to the forefront. Early advances in robotics and automation were typically 
applied in relatively simple contexts and structured environments where trustworthiness could be 
straightforwardly assessed and assured (Moorman, Deshpande, & Zaltman, 1993). However, with 
an increasing number of applications that attempt to cope with complex and uncertain problems 
once reserved almost exclusively for human judgment, new theories and methods to assess and 
assure trustworthiness have become imperative. As tragedies traced to defects in the design of 
complex systems proliferate (e.g. Gregory Travis, 2019; Levin & Beene, 2018) it has become clear 
that traditional approaches to trust fail to address the new risks and reduced transparency of 
advanced automation and artificial intelligence-based approaches. 

Much of the previous work on trust in automation focuses merely on identifying factors that 
influence people’s trust (Hancock et al., 2011a; Hoff & Bashir, 2014; Lewandowsky, Mundy, & 
Tan, 2000; Moorman et al., 1993; Schaefer et al., 2014). Agreement on these factors is useful and 
sometimes provides helpful information about the importance of situation awareness for 
automation users. However, knowing factors often does not provide guidance with enough 
specification detail to influence design decisions that can help avoid such problems in the first 
place (Hoffman & Deal, 2008). 

Though, unfortunately, some researchers still pursue the goal of merely promoting greater trust in 
automation, we believe that a better research objective is to find ways to help people continuously 
maintain an appropriate level of reliance on technology, taking into account the reliability of the 
capabilities of the system as it functions at a given time and in a given situation context (Hoffman, 
Johnson, Bradshaw, & Underbrink, 2013; Lee & See, 2004). The latter objective has led to 
productive discussions in the research community about how to facilitate reliable “trust 



 

 

calibration.” Research on trust calibration seeks for ways to enhance an individual’s ability to 
accurately assess the trustworthiness of the technology in different circumstances. 

People always arrive at a relationship to some item of technology with some initial bias that leads 
them to under trust or over trust its reliability and performance. This initial bias is, of course, 
outside of the control of those who designed and built the artifact. Fortunately, under normal 
circumstances this initial trust assessment will be modified and updated as people use the 
technology. The trust people gain with the experience of use is what designers and builders can 
influence. This underscores the point that trust is not a static state, but rather the continuously 
varying result of a dynamic process (Bradshaw et al., 2004; Hoffman et al., 2009; Lewandowsky 
et al., 2000; Mayer, Davis, & Schoorman, 1995). For this reason, it is critical to understand the 
process by which trust evolves (Mayer et al., 1995), so designers and builders can understand how 
their implementation choices might increase or decrease both the trustworthiness of the technology 
and also the ability of people to accurately assess that trustworthiness. 

In this chapter, we argue that interdependence relationships are the mechanism employed to 
actively manage the processes that assess trustworthiness of the technology and that enable 
accurate trust calibration by the people who use it. Trust is relational (Mayer et al., 1995) and 
interdependence is “the set of complementary relationships that two or more parties rely on to 
manage required (hard) or opportunistic (soft) dependencies in joint activity” (Johnson et al., 
2014). Interdependence relationships constitute the necessary junctures in task-oriented 
communication and actions among people and machines that make the joint activity in which they 
are engaged productive (Johnson et al., 2014). Trust is commonly defined as “the willingness of a 
party to be vulnerable to the actions of another party based on the expectation that the other will 
perform a particular action important to the trustor” (Mayer et al., 1995), making the trustor 
dependent on the trustee. Typically, the relationship of trust among the collaborating parties in 
non-trivial situations is not a one-way transaction, making the parties not simply dependent but 
rather mutually interdependent. Interactions between humans and machines in mutually 
interdependent relationships allow them to support one another with respect to current 
interdependencies. The degree of performance and reliability in current interactions helps actors 
accurately calibrate trust with respect to future interactions. 

In order to understand how interdependence relationships are used to actively manage assessment 
of trustworthiness and trust calibration, we will extend Mayer et al.’s (1995) model of human-
human trust to propose a new model appropriate for groups of humans and machines. Then we 
will discuss the role of interdependence in the new model. We will show how the model has 
allowed us to extend and employ Interdependence Analysis tables (Johnson, Vignati, & Duran, 
2018) as an effective tool for understanding and designing systems capable of actively managing 
trust through interdependence relationships. 

2! Model of a Risk-Taking Trust Relationship 

One of the most cited models of trust is that of Mayer, Davis and Schoorman (1995). Though 
developed for examining a single unidirectional human-human trust dyad in an organizational 
context, its appropriateness for human-machine trust relationships will be argued here. The 
original model is extended to consider a broader view of activity with refinements to the role of 
trust. This new model is depicted in Figure 1. 



 

 

 

 

Figure 1 Model of a risk-taking trust relationship decision, extended and refined from Mayer et al.’s model of trust (1995). 

The model proposed by Mayer et al. (1995) is a model of trust, but emphasized the importance of 
trusting actions taken in the context of a specific risk-taking relationship. “There is no risk taken 
in the willingness to be vulnerable (i.e., to trust), but risk is inherent in the behavioral manifestation 
of the willingness to be vulnerable. One does not need to risk anything in order to trust; however, 
one must take a risk in order to engage in trusting action” (Mayer et al., 1995, p. 724). Figure 1 
emphasizes a specific risk-taking relationship (RTR) decision as a key element in the model, not 
only because it is the manifestation of trust, but also because it is where the trustor engages in an 
interdependent relationship with the trustee. The outcome of that decision can strengthen or 
weaken the assessment of trustworthiness with experience over time. When direct information 
about the trustee is lacking, people compensate by using what other information they have 
(Rousseau, Sitkin, Burt, & Camerer, 1998) — for example, relying on the reputation of an 
institution to which the trustee belongs. However, these initial biases will be informed, modified, 
and potentially overturned by relational trust based on experience. Experience based on the 
outcomes of trusting actions, taken in the context of a specific RTR over time, enables accurate 
trust calibration, generating the objective and subjective bases for justified trust and mistrust. The 
importance of the RTR is stated by Mayer et al. in this way: 

This relationship-specific boundary condition of our approach is important, 
because a number of authors have dealt with trust for generalized others (e.g., 
Rotter, 1967) and trust as a social phenomenon (e.g., Lewis & Weigert, 1985). 



 

 

Even though such approaches help provide a general sense of the considerations 
involved in trust, they do not clarify the relationship between two specific 
individuals and the reasons why a trustor would trust a trustee. Further, the 
failure to clearly specify the trustor and the trustee encourages the tendency to 
change referents and even levels of analysis, which obfuscates the nature of the 
trust relationship. (Mayer et al., 1995, p. 711). 

The model proposed in Figure 1 remains true to the importance of the relationship. It also extends 
the idea that context is critical by including additional situational factors and Trustor preferences. 
While the original model was focused on factors effecting trust, the model proposed in Figure 1 is 
focused on factors effecting the RTR decision. The RTR will be further examined below, following 
a description of other elements of the new model. 

2.1! Characteristics of the Trustor 

Propensity. The Mayer et al. (1995) model includes the attribute of trustor propensity, which is 
described as a dispositional willingness to rely on others. People certainly have an innate 
propensity to either trust or mistrust technology. It has also been shown that the propensity to trust 
technology often differs from the propensity to trust people (Madhavan & Wiegmann, 2012). 

Preferences. Our model includes an additional factor not found in the original model: preference. 
While preference is not a factor in trust assessment, it can play a role in whether an RTR is 
established or not. One can trust someone and still choose not to engage in an RTR based solely 
on preference. For example, nobody doubts the efficacy of automatic shifting mechanisms of 
today’s cars, yet some people still choose to manually shift for the pleasure of it. Some people like 
working with others or using tools and technology, while some get satisfaction from doing it all 
on their own. 

2.2! Characteristics of the Trustee 

The first three trustee factors are identical to the original Mayer et al. (1995) model: ability, 
benevolence, and integrity. Ability is the skill, competence, expertise of the trustee as perceived 
by the trustor. Benevolence is the trustor’s belief in the trustee’s desire to do good on behalf of the 
trustor. Integrity is the trustor’s belief that the trustee adheres to an acceptable set of principles. 
These factors, determined from a human-human organizational context, seem equally valuable in 
human-automation contexts. 

Commonalities in interpersonal and human-automation trust. It has been asserted that 
“Human-automation trust and interpersonal trust depend on different attributes. Whereas 
interpersonal trust can be based on the ability, integrity, or benevolence of a trustee (Mayer et al., 
1995), human-automation trust depends on the performance, process, or purpose of an automated 
system (Lee & Moray, 1992)” (Hoff & Bashir, 2014, p. 413). Contrary what Hoff and Bashir seem 
to claim, we see the relevant attributes of the trustee as essentially similar, regardless of whether 
the trust is interpersonal or directed toward machines. Indeed, two of the authors just cited (Lee 
and Moray) themselves concluded “that the multidimensional construct of trust developed to 
describe trust between humans, together with a consideration of the dynamic aspects of trust, can 
be used to describe trust between humans and machines” (Lee & Moray, 1992, p. 1268). 



 

 

Ability.  Ability plays a similar role in human-human and human-machine trust. Mayer et. al. 
(1995) describe ability as “that group of skills, competencies, and characteristics” of the trustee as 
perceived by the trustor, this does capture some aspects we would consider important. A more 
complete definition would be Lee and See’s concept of performance defined as “the current and 
historical operation of the automation and includes characteristics such as reliability, predictability, 
and ability” (Lee & See, 2004, p. 59). One key challenge for automation is that humans typically 
find it easier to estimate the abilities of people than machines. Though people can be trained to 
make better assessments, they often persist despite themselves in projecting intentionality onto a 
machine (Nass & Moon, 2000). 

Benevolence. While people can certainly hold benevolent feelings toward another, machines do 
not. There are those who would claim that the designers can build in benevolence, but this is 
nothing more than wishful mnemonics (McDermott, 1976). Current machines do not have desires, 
though they may have built-in utility functions. They have no understanding of broader goodness 
beyond their specific tasks and know little or nothing about the people (potential trustors) with 
whom they are working. While designers, in general, attempt to make systems “do their best” their 
attempts are more concerned with ability than benevolence. A notable exception is when designers 
deliberately try to create software that disables or hijacks machines that don’t belong to them. In 
this sense, software might be seen as “malicious,” though it is really the hacker behind the code 
that has acted with malicious intent. The code is simply “following instructions” that it has been 
given. 

Integrity. In interpersonal relations, integrity is a moral virtue — another wishful mnemonic if it 
were to be applied literally to machines. However, when Mayer et al. refer to integrity, it means 
specifically that the trustee adheres to “an acceptable set of principles” (1995, p. 719). This is quite 
plausible for machines. In some sense, this aligns with Lee and Moray’s (1992) concept of purpose, 
which essentially means carrying out the designer’s intent. Depending on how the “acceptable set 
of principles” is defined, machines could have significantly more integrity than people. To the 
extent the principles can be formally codified, machines will and indeed must, in ordinary 
circumstances, meticulously and reliably comply with those principles. While such adherence to 
principles sounds like a solid win for trusting machines, the problem is in the concrete application 
of the necessarily abstract principles. This is demonstrated by the well-known example of Isaac 
Asimov’s Laws of Robotics (Asimov, 1950). For instance, what does it mean to “do no harm” 
when the machine is faced with a zero-sum situation — where choosing to protect one party 
necessarily causes harm to another and vice versa? While a desirable objective, practical and 
effective principles for guiding automated behavior are not only difficult to code, but also may be 
difficult for people to understand. 

Even when machines are incapable of benevolence or integrity, people may treat them as if they 
were acting intentionally (Dennett, 1989). It has been repeatedly demonstrated that people may 
apply social rules and expectations to computers in a mindless fashion (Nass & Moon, 2000). 
While designers may be able to exploit people’s false projections, it borders on the unethical to 
deliberately misrepresent what machines can and can’t do except when performing experimental 
studies. 



 

 

2.3! Situational Factors 

Risk is a big factor in trust. In the Mayer et al. model, “the perception of risk involves the trustor's 
belief about likelihoods of gains or losses outside of considerations that involve the relationship 
with the particular trustee” (1995, p. 726) and this is the same in Figure 1. What has been added is 
the consideration of alternatives. While alternatives do not impact whether a trustor trusts a trustee, 
they do impact the decision to engage in a trusting action (i.e. RTR). Alternatives include both the 
different ways the trustor could trust and engage with the trustees, as well as the other ways the 
trustor could accomplish the work (e.g. do it themselves, engage another trustee).  

2.4! How to Choose Whether to Engage in an RTR 

In the original Mayer et al. model, the decision to engage in an RTR was determined by a simple 
tradeoff between perceptions of trust and risk (Mayer et al., 1995, p. 726). We suggest that 
additional important considerations may come into play. 

The first minor modification is the inclusion of both perceived risk and reward. Trustors will not 
only evaluate the potential for loss (risk), but also the potential for gain (reward). Greed has often 
motivated people to take high risk actions. 

The second modification is the addition of Activity Context in situational factors. Trust can only 
be evaluated with respect to the context in which and the method by which the action is being 
performed by a specific Trustee. This is similar to Lee and See’s concept of process, which they 
described as “Process is the degree to which the automation’s algorithms are appropriate for the 
situation and able to achieve the operator’s goals. Process information describes how the 
automation operates” (Lee & See, 2004, p. 59). For example, a parent may trust their teenager to 
drive in general, but may re-evaluate that trust when considering a more unusual driving challenge 
like driving across the country or in a busy city. Similarly, parents needing to pick up a package 
may ask their teenager to choose a longer but more straightforward route than if one of them were 
doing it themselves. In the model in Figure 1, the Activity Context attempts to capture these 
potentially crucial aspects of the decision process. 

Activity Context influences both the trustor’s assessment of the Trustees trustworthiness and the 
perceived risk/reward. The assessment of trust, driven by the perceived Trustee factors and the 
Assessment of the situational factors of activity context and perceived risk/reward are combined 
into the Trustors assessment of the specific RTR. Trust and risk assessments do not result in a 
binary decision to engage (trust) or not (mistrust). Hoffman et al. (2009) describe several possible 
trust relationships that vary in strength. The proposed model depicts a degree of trust to indicate 
the range of possibilities of trust. It is not uncommon for people to be uncertain about trust. This 
is particularly relevant for human-machine trust. The goal of the proposed model in Figure 1 is to 
be a reminder that trusting is not an either-or decision. 

One of the biggest considerations influencing an RTR decision are the options available. People 
do not consider a single option in isolation from all other options. I trustor might evaluate several 
alternative RTRs that could achieve the desired outcome, as shown in Figure 1. Each of these 
alternatives can have different trustees, different trustworthiness, different activity context, and 
different risks and rewards. The trustor can consider multiple RTRs as well as the option to do the 



 

 

work themselves when making a choice. All of these options will be considered, as well as a host 
of additional considerations such as workload, attention demand, and efficiency. 

Another often ignored consideration in trust relationships is personal preference. Simply trusting 
a trustee is not sufficient to decide to engage in an RTR. The trustor must also prefer to engage in 
that relationship over other options, including the option to do nothing. Time and limited options 
might force one to engage with trustees that are not fully trusted. Most people might be willing to 
engage in a specific RTR even if they are somewhat uncertain about their level of trust, but their 
preference to do so can vary. Preferences may lead some people to never engage in actions 
requiring trust. 

In short, the trustor will consider the level of trust for a given trustee in a given mode of interaction 
and situation. A specific RTR may be compared with other acceptable RTRS. Personal preference 
will help guide the choice of whether or not to engage in a given RTR. The results of an evaluation 
of one or more RTRs can be used to inform a trustor’s decision. 

We do not consider our changes to the Mayer et al. model as fundamental. Our model simply 
broadens its scope so that trust can be more adequately considered in the context of decision 
making. In the complex realm of human-machine interaction, we find that these additional 
considerations often play an important role in analysis, experimentation, and deployment.  

3! The Role of Context 

The importance of context has been frequently highlighted by researchers (Bradshaw et al., 2004; 
Hoffman et al., 2013; Lee & See, 2004; Mayer et al., 1995; Rousseau et al., 1998). Formalizing 
context has proven a persistent challenge, as has determining relevant context for different 
problems in different situations. 

One basic approach to context is to frame a situation in terms of the what, who and how. The 
context of what refers to the work that needs to be done or the goal that needs to be achieved. 
Mayer et al. (1995) state that the question "Do you trust them?" must be qualified with "trust them 
to do what?" This is activity context. Generally speaking, the threshold for trusting a machine to 
carry your luggage is considerably lower than that required to trust a machine to carry your 
newborn child. The details of the work and the methods by which it is performed also matter. A 
parent might trust a teenager to back the car out of the driveway, or to drive themselves to school, 
but may not trust them to drive in the city or at night. To properly analyze and understand trust, 
modelling the work context in detail (i.e., the what) will be essential. 

In our basic approach, one must also answer the who question. A simple description of the trustee 
is built into the Mayer et al. model (1995) in terms of ability, benevolence and integrity. People 
do establish general feelings of trust toward individuals (e.g. family members, coworkers, 
teachers). This general feeling must be considered with respect to the details of the work to be 
done (the what). A trustor might trust a family member to drive their car, but they may not trust 
them to provide accurate medical advice. Conversely, the trustor might trust a doctor to provide 
medical advice, but not be willing to let the doctor borrow their car. Understanding the contexts 
of both what and who are important and the two are related. As noted in the “How to Choose 



 

 

Whether to Engage in an RTR” section, both are needed to have sufficient context for adequately 
justified decisions. Both are also needed to properly analyze and understand trust. 

Our approach to context also requires knowing how the work will be done. Part of understanding 
the context of how is understanding the ability of the trustee (the who). What aspects of the work 
do they consider, and which aspect do they not. It might seem great to some that an automated 
targeting robot can aim faster and fire more accurately than a human, but this ability loses its 
potency if the robot’s targeting system cannot distinguish friend from foe. This is critical activity 
context about how and is needed when assessing trust in such systems. 

Another aspect of how is considering the method by which something might be achieved. The 
inclusion of consideration of alternative methods available to the trustee in the model provides 
contextual detail necessary for interpreting and assessing whether to engage in a specific RTR. 
Mayer et al. stated that “the specific consequences of trust will be determined by contextual factors 
such as the stakes involved, the balance of power in the relationship, the perception of the level of 
risk, and the alternatives available to the trustor [emphasis added]” (1995, pp. 726–727). The 
various options for methods of accomplishing the work provide critical context for understanding 
decisions about whether to engage in an RTR or not. In other words, people consider more than 
whether they trust the technology when choosing to rely on it. A trustor might trust the autonomous 
capabilities of their new Tesla, but trust themselves more in certain traffic situations. The decision 
might not be based on competence, but on an understanding of context. Or the decision might be 
purely preferential. The trustor might trust their Tesla to drive the route, but choose to manually 
drive the scenic route along the coast. 

One last contextual consideration with respect to how that is important for automation, is the 
potential interaction available. Does the trustor need to trust it blindly? Can they monitor the 
automation effectively? Do they have any means to correct or influence the automation after the 
initial trust engagement? These interactive possibilities are part of the activity context and 
determine how automation can be engaged in different ways and define a variety of trust processes 
available. 

4! Trust as a Process 

One of the key aspects of both the original Mayer et al. model and the proposed one is the feedback 
loop. When trying to understand trust and risk-taking trust relationships, it is important to 
remember that trust is a process. While there is significant consensus on this (Bradshaw et al., 
2004; Hoffman et al., 2009; Lewandowsky et al., 2000; Mayer et al., 1995) it is something worth 
re-emphasizing. 

The idea that trust is a process is not merely an observation of human-human dyads or human-
automation systems used to support theory. Trust being a process has serious implications for 
technology, its design choices, and its acceptance. While an initial impression of trust (ability, 
benevolence, integrity) might be based on word of mouth, external observation, or blind faith, any 
long-term use will be based on the outcomes of RTRs. This poses a major challenge to today’s 
technology whose ability to engage effectively in such relationships remains impoverished 
(Johnson & Vera, 2019). Today’s technology relies heavily on reliable performance as the main 
(sometimes only) feedback. This makes trust in systems brittle and often leaves people ill-informed 



 

 

to make accurate trust assessments in changing contexts. More complex interaction in support of 
trust would allow for a broader range of trust management not commonly found in today’s 
technology. For example, how does a system convey its abilities or its integrity (i.e. guiding 
principles)? How can people evaluate a system prior to having to trust it? How do interactions with 
the system build or erode trust? 

Consider the example of a new baby sitter. The trustor might ask the babysitter some questions 
about previous experience to establish credibility. They could also probe ability by asking 
hypothetical questions such as “Do you know what to do if there is a fire?” Upon return, 
conversations about the evening’s events can provide feedback that will alter the trustor’s 
perception about the babysitter’s ability, benevolence or integrity. 

Machines struggle with all of these options. You rarely can ask them about past experience. Only 
a few systems allow engaging in “what-if” style interaction. The amount of feedback provided is 
usually quite limited, making it difficult for people to properly calibrate their trust in a given 
technology. The limited social repertoire of technology has led to a host of issues including 
automation surprises (Sarter, Woods, & Billings, 1997) and clumsy automation (Wiener & Curry, 
1980) to name a few. Many of the limitations are captured in the Ten Challenges of making 
automation a “Team Player” (Klein, Woods, Bradshaw, Hoffman, & Feltovich, 2004). 

Technology’s limited capacity to interact not only impedes its effectiveness and trust, but can 
confound research. In many examples comparing interpersonal trust and human-automation trust 
(Lewandowsky et al., 2000), a human is a “confederate” and no real human-machine interaction 
is permissible. Thus, for this type of research, the system is forced to be represented as a black box 
to the participant. Similarly, human-robot interaction research has pointed out that performance is 
one of the largest influences of trust (Hancock et al., 2011b), but this is based on systems with no 
trust-enabling interaction, leaving performance as the only mechanism for establishing trust. 

Human trust over time depends on development of relational-trust (Rousseau et al., 1998). 
“Relational trust derives from repeated interactions over time between trustor and trustee. 
Information available to the trustor from within the relationship itself forms the basis of relational 
trust” (Rousseau et al., 1998, p. 399). Taking the perspective that trust is a process and that the 
exchange of information through repeated interactions over time is how appropriate relational trust 
is developed leads to the role of interdependence. 

5! The Role of Interdependence 

Before explaining the role of interdependence with respect to trust, a brief summary of its role in 
human-machine systems in general is in order. Coordination is the effective management of 
dependencies (Malone & Crowston, 1994), or more specifically interdependence relationships 
(Johnson et al., 2011). Coactive Design, is a unique design approach based on interdependence 
(Johnson et al., 2011). The goal of Coactive Design is to help designers identify interdependence 
relationships in a joint activity, so they can design systems that support these relationships, thus 
enabling designers to achieve the objectives of coordination, collaboration, and teamwork 
(Johnson et al., 2014). Instead of considering how to allocate functions, the primary question is 
how to support interdependence relationships (Johnson, Bradshaw, & Feltovich, 2017). 



 

 

Coactive Design proposes three essential interdependence relations: observability, predictability, 
and directability (Johnson et al., 2014). Observability means making pertinent aspects of one’s 
status, as well as one’s knowledge of the team, task, and environment, observable to others. 
Predictability means that one’s actions should be predictable enough that others can reasonably 
rely on them when considering their own actions. Directability means one’s ability to influence 
the behavior of others and complementarily be influenced by others. These interdependence 
relationships are essential to effective coordination. They also turn out to be the same foundational 
relationships that are critical to trust. This was indirectly predicted by Rousseau et al. who noted 
that “New organizational forms built around the management of interdependence will provide a 
catalyst for innovative research on trust” (Rousseau et al., 1998, p. 402). So, in what ways do 
interdependence relationships influence trust? 

5.1! Trust is Developed through Interdependence Relationships 

Interdependence relationships are the mechanism by which relational trust is established. In other 
words, in order to establish, develop and maintain appropriate trust, technology needs to be 
endowed with appropriate support for interdependence relationships, such as observability, 
predictability and directability. The overall goal of any technology should not simply be for people 
to trust it, but to support the development of appropriate justified trust and mistrust so that people 
understand when to trust and when not to. The goal should be the establishment of trust that leads 
to better performance outcomes by the human-machine combination. 

Trust, whether between people or between people and machines, is always exploratory. As 
Hoffman states: 

Active exploration of trusting–relying relationships cannot and should not be 
aimed at achieving single stable states or maintaining some decontextualized 
metrical value, but must be aimed at maintaining an appropriate and context-
dependent expectation. (Hoffman, 2017, p. 157) 

For simple trust relationships with a context suitable for human intuition (e.g. basic physics), non-
social exploration is certainly feasible. There is no need to have a conversation with a chair to 
determine if you can stand on it. Some basic incremental loading will provide the feedback you 
need to decide. It is also unnecessary to understand the inner workings of systems when how the 
work gets done is irrelevant. For example, it does not matter how the automatic teller moves 
money, just that the correct amount of money is presented for retrieval. However, today’s 
technology is pushing into more sophisticated domains with greater complexity and uncertainty. 
People cannot simply observe an autonomous car drive in a single circumstance and be confident 
it can handle all driving situations. Doctors will not blindly accept AI medical decisions without 
understanding something about the process behind the decision. Thus, today’s sophisticated 
technology will need to engage in interdependence relationships, like observability, predictability 
and directability to foster appropriate trust. 

Observability means making pertinent aspects of one’s status, as well as one’s knowledge of the 
team, task, and environment, observable to others. This relationship allows a trustor to see or 
understand pertinent aspects of the trustee. This can and should involve more than just the 
performance outcome. Consider commercial airline autopilots and their ability to compensate for 



 

 

issues such as asymmetric icing on the wings. These systems silently compensate (Norman, 1990) 
leaving the pilot unaware of the trouble that is growing. Eventually they reach their limits and 
abruptly hand control back to the pilot resulting in a bumpy transfer of controls (Woods & Sarter, 
2000). These classic problems with automation are due to a lack of observability. There are many 
different ways a system can be observable, each with a cost and a benefit. The system could have 
informed the pilot that it was experiencing icing. If unable to determine that icing was the issue, 
the system could have informed the pilot that more power than normal was required. The system 
could have warned the pilot prior to reaching its limits that it was running out of control authority. 
All of these are examples of making pertinent aspects of the system observable to the human pilot. 
People have a natural tendency to engage in this type of progress appraisal sharing, even if it is as 
basic as uttering “something’s not right.” Machines often lack this basic social competence, even 
in some of today’s most “capable” systems (Johnson & Vera, 2019). A review of Lee and See’s 
design considerations for how to make automation trustable shows that a large number are 
examples of observability including: 

• Show the past performance of the automation. 

• Show the process and algorithms of the automation by revealing intermediate 
results in a way that is comprehensible to the operators. 

• Simplify the algorithms and operation of the automation to make it more 
understandable. 

• Show the purpose of the automation, design basis, and range of applications 
in a way that relates to the users’ goals. 

        (Lee & See, 2004, p. 74) 

Predictability means that one’s actions should be predictable enough that others can reasonably 
rely on them when considering their own actions. This relationship allows the trustor to establish 
expectations used to evaluate performance outcomes. Predictability has been a long standing 
cornerstone of trust (Lee & See, 2004; Muir & Moray, 1996; Rempel & Holmes, 1985). It is 
unnecessary to explain why being predictable helps trust and being unpredictable hurts trust. 
However, it is useful to note the difference between predictable behavior (performance outcome) 
and supporting a predictable relationship (interaction). Again, progress appraisals play a key role 
(Feltovich, Bradshaw, Clancey, Johnson, & Bunch, 2008). Statements like “I am running late” or 
“I am getting tired” help the trustor adjust their expectations and avoid future trust violations from 
performance outcome deviations. Other means to convey predictability include complying with 
established norms and being deterministic not only in the outcome, but also in how work is 
accomplished. Even failure can be more acceptable if it is predictable (Muir & Moray, 1996). 

Directability means one’s ability to influence the behavior of others and complementarily be 
influenced by others. This relationship allows a trustor to bound or obligate the behavior of a 
trustee (Bradshaw et al., 2004). While observability (sometimes referred to as transparency) (Chen 
et al., 2014; Lyons, Wortham, Theodorou, & Bryson, 2013; Yang, Unhelkar, Li, & Shah, 2017) 
and predictability (Hoff & Bashir, 2014; Lee & See, 2004; Schaefer et al., 2014) both have 
significant bodies of associated research connecting them to trust, directability has received much 



 

 

less attention. Often it is the ability to direct or influence a trustee that allows a trustor to take the 
initial steps of partial trust. 

Through experience in seeing the results of providing outside direction to the 
subject in order to avoid or to recover from failure (whether such failure is 
inadvertent or intentional) the observer also has an opportunity to learn 
something about the subject’s disposition for compliance: proving the 
technology to see whether it will do all things that it is commanded. (Bradshaw 
et al., 2004, pp. 19–20) 

In order to be directable, the trustee needs to support receiving direction from the trustor and must 
also possess a “disposition for compliance.” From an automation perspective, the machine must 
have a human-usable interface for providing direction and the algorithms must support ingestion 
and incorporation of the directions. For example, early driving direction software would provide 
you the “best” route and the user had no say in the results. Now such software offers three routes 
allowing the user to choose or even drag the route to adjust portions of the result. A trustor’s ability 
to quickly and reliably bring a trustee into compliance can play a role in their risk assessment of 
the given alternative. Consider what a driving instructor might be willing to trust a student driver 
to do if they are using a car in which the instructor has a complete set of duplicate controls, versus 
a car with only a duplicate brake, versus a car with no controls for the instructor. These alternatives 
will certainly affect the instructor’s willingness to engage in an RTR. 

Current deep learning approaches are an example of how lack of support for interdependence can 
inhibit trust. Many of today’s machine learning approaches fail to support observability, 
predictability and directability. People cannot see what the state of the system is or what decisions 
are based upon. Making these systems more observable is a current area of research (Zeiler & 
Fergus, 2014). These approaches are notoriously unpredictable. They often provide odd and 
unpredictable results (Goodfellow, Shlens, & Szegedy, 2014) and demonstrations of their 
unpredictable brittleness, such as Tesla vehicles being tricked by a few stickers1, have become 
commonplace. These systems provide no indication of how or when they will fail. The design of 
these systems inhibits directability. They typically do not have interfaces for user input, only data 
input. Additionally, their algorithms are not designed to support direct input making compliance 
difficult or even impossible. While today’s machine learning approaches are demonstrating 
amazing leaps in competence (ability), they struggle to support interdependence making trust and 
acceptance challenging. This is evidenced by recent research programs like the Defense Advanced 
Research Projects Agency (DARPA) Explainable Artificial Intelligence (XAI) program, which 
notes that “the effectiveness of these systems is limited by the machine’s current inability to 
explain their decisions and actions to human users.2” 

Support of interdependence can be achieved through a variety of means. Observability can be 
achieved by explicit direct communication, like stating “I am tired,” or through behavioral displays 
(Feltovich, Bradshaw, Jeffers, Suri, & Uszok, 2004) such as sighing or body posture. Similarly, 
predictability can be stating one’s intentions verbally or making actions legible (Dragan, Lee, & 
Srinivasa, 2013) so that one’s intentions are clear. Directability can be achieved through 
commands, suggestions (“Have you tried jiggling it”), progress appraisals (“I’m running late”), 
                                                
1 https://www.newscientist.com/article/2198325-teslas-autopilot-tricked-into-driving-on-the-wrong-side-of-the-road/ 
2 www.darpa.mil/program/explainable-artificial-intelligence. 



 

 

warnings (“Watch your step”), helpful adjuncts (“Do you want me to carry that for you?”), and 
observations about relevant unexpected events (“It has started to rain”). All of these can play a role 
in allowing the trustee to convey trust signatures to the trustor. This is not a unidirectional process, 
because the trustor “can not only be made aware of trust and mistrust signatures but can also 
actively probe the technology (probing the world through the technology) to test hypotheses about 
trust, and then use the results to adjust subsequent human-machine activities (that is, reliance)” 
(Hoffman et al., 2013, p. 87). 

In sum, the role of interdependence relationships is to support active and continuous exploration 
of trust between a trustor and a trustee to ensure trustor assessments are appropriate for achieving 
the best outcomes possible. 

5.2! Interdependence Relationships Enable Partial Trust 

Trust is not all or nothing. There are many ways to trust and many types of trust relationships 
(Hoffman et al., 2009). Support for interdependence plays a role in which intermediary forms of 
trust are acceptable and under what conditions. “Degrees of interdependence actually alter the form 
trust may take” (Rousseau et al., 1998, p. 395). Initially, a parent may trust a child to cross a busy 
street only while holding their hand. Over time, the parent may be content to watch from the side 
of the road. Eventually, they will have complete trust. Along the way, support for interdependence 
(e.g. walking while holding hands, observing the child checking for traffic, observing proper 
decision making, predictable performance) will enable establishment and development of trust. 

5.3! Interdependence Relationships Help Resolve the Uncertain 

Because interdependence enables partial trust, it helps resolve trust uncertainty. “The need for 
trusting behavior often arises while there is still a lack of data regarding some of the three factors” 
(Mayer et al., 1995, p. 730). People will often engage in RTRs to actively explore the suitability 
of RTRs. They use the feedback from initial engagements to inform future ones, thus reducing 
uncertainty through experience. 

5.4! Interdependence Relationships Encourage Opportunistic Trust 

Trust is not always about required dependence (i.e. a hard constraint). Rousseau et al. stated that 
“The second necessary condition of trust is interdependence, where the interests of one party 
cannot [emphasis added] be achieved without reliance upon another” (1998, p. 395). However, 
this is not the only option. There are many examples of trust where the trustor is perfectly capable 
of achieving the goal without reliance (e.g. commercial airline autopilots). These soft constraint 
examples of trust highlight the importance of consideration for both other alternatives and trustor 
preference when trying to understand risk-taking relationships. 

5.5! Interdependence Relationships Help Manage the Complexities of Trust 

Trust is complex and multi-dimensional. “The human’s stance toward the machine is always some 
mixture of justified and unjustified trusting and justified and unjustified mistrusting…multiple 
trusting relations exist simultaneously” (Hoffman, 2017, pp. 152–153). Because of this, there is a 
need to leverage interdependence relationships to both establish justified trust (i.e. avoid under-



 

 

reliance) and justified mistrust (avoid over-reliance). Additionally, interdependence relationships 
can be used to recognize and respond through interaction to counter both positive and negative 
trust mis-alignments (avoid unjustified trust and unjustified mistrust). Trusting is an evolving 
phenomenon. The basis of trust changes as the relationship progresses (Rempel & Holmes, 1985). 
“A more complete understanding of trust would come from consideration of its evolution within a 
relationship” (Mayer et al., 1995, p. 727). 

6! Applying Interdependence Analysis to Trust 

Having a model is informative and can provide guidance, but may fall short of influencing design 
(Hoffman & Deal, 2008). Developers, who are by and large not experts in trust, may have a 
difficult time interpreting the model and applying it to their design problem. What they need is 
formative design tools (Johnson, Bradshaw, et al., 2017) that also help them account for trust. 

Coactive Design proposed a design tool called the Interdependence Analysis table (Johnson, 
Bradshaw, et al., 2017; Johnson et al., 2014, 2018). The purpose of Interdependence Analysis (IA) 
is understanding how people and automation can effectively team by identifying and providing 
insight into the potential interdependence relationships used to support one another throughout an 
activity. This tool already supports many of the key aspects of the proposed trust model and can 
easily be extended to consider trust and emphasize how interdependence relationships support trust 
management. 

6.1! The Interdependence Analysis Table 

The IA tool is in the form of a table, as shown in Figure 2. For discussion purposes, the table 
presented is populated with a simplified analysis of the aircraft traffic collision avoidance problem. 
In short, how do you ensure that the aircraft does not collide with other air traffic? The table has 
three main sections: (1) model of joint activity (the what), (2) assessment of potential 
interdependence (the who), and (3) analysis of potential workflows (the how). 



 

 

 

Figure 2 How the Interdependence Analysis Table relates to the proposed model of trust. 

6.2! The What 

The first section models the work. While there are many interesting nuances about how to model 
joint work (Johnson et al., 2018), for this discussion the model of work is the answer to the question 
“trust it to do what?” This provides the activity context. At this point in the analysis, the designer 
is not concerned with either the who (trustee) or the how, both of which are needed for a full trust 
assessment of alternatives. For the aircraft traffic collision avoidance, the work involves sensing 
traffic, interpreting if it will collide, deciding how to avoid it, and executing the avoidance 
maneuver. 



 

 

6.3! The Who 

The second section captures the who and provides a systematic way to assesses potential 
interdependence. It involves enumerating the viable team role alternatives, assessing the ability to 
perform the work, assessing the ability to support another team member as they perform the work, 
identifying potential interdependencies, and then determining the requirements to support the 
interdependence relationships of interest. The team role alternatives capture the set of entities that 
can potentially participate in the work. The example in Figure 2 depicts two alternatives. 
Alternative one (TA1) is the machine (M), in other words automation, as the performer with the 
potential for human pilot (H) assistance. The second alternative (TA2) is the human as the 
performer with the potential for automated assistance. 

The first column in an alternative is defined as the performer (P), meaning the entity doing the 
work. To accommodate a trust assessment, the IA table has been extended with an additional 
column under performer labelled trustworthiness (T). This is the trustor’s subjective assessment 
of the given performer’s trustworthiness in performing the specific aspect of work it aligns with in 
section 1. The remaining columns in an alternative are supporting members (S) assisting the 
performer. The assessments are generally qualitative assessments captured using a color-coding 
scheme explained in Figure 2, though it can be supplemented with empirical quantitative data 
when available. The color-coding is different for each type of column. 

The color-coding of the performer (P) is an assessment of the capacity to perform. This is typically 
the designer’s assessment of ability of the performer who is the trustee in the relationship. Green 
means reliable, yellow is less than perfect reliability, orange requires assistance and red means no 
ability. 

The color-coding for the newly added trustworthiness column (T) reflects the trustor’s subjective 
trustworthiness assessment of the given performer (trustee) to perform the specified aspect of the 
work. By connecting trust to work we can improve the specificity, which refers to the degree to 
which trust is associated with a particular component or aspect of the trustee (Lee & See, 2004). 
Green means the trustee is trusted. Yellow indicates circumscribed trust (Hoffman et al., 2009). 
This is a more limited trust that might vary with time or activity context. Orange indicates 
contingent trust (Hoffman et al., 2009). This is an even more limited trust that depends on 
circumstances. Such trust might demand additional monitoring or progress appraisal checkpoints. 
Red is mistrust and indicates that the trustor is unlikely to engage in an RTR. Grey is uncertain. 
The trustor might choose to explore trust by engaging in an RTR, or they may be hesitant to do so 
depending on their propensity. 

The color-coding for the supporting team member column (S) is an assessment of that team 
member’s potential to support the performer for the activity specified by the row. The color red 
indicates no potential for interdependence, thus independent operation is the only viable option for 
the task. Orange indicates a hard constraint, such as providing supplemental lifting capacity when 
objects are too heavy. Another example of orange is when a machine needs human authorization 
to perform the activity. Yellow is used to represent improvements to reliability. For example, a 
human could provide recognition assistance to a robot and increase the reliability in identifying 
coffee mugs. Green is used to indicate assistance that may improve efficiency. For example, a 
robot may be able to determine the shortest route much faster than a human or could assist in 



 

 

cleaning up a room. The supporting team member columns are used to identify interdependence 
requirements (i.e. observability, predictability, directability) needed to support joint activity, but 
these are also the type of relationships used to calibrate trust. 

The purpose of the color-coding is to help identify important design issues with respect to human-
machine teaming. The colors and relationships between colors help characterize the design 
(Johnson et al., 2014). The performer column colors help identify potential brittleness and hard 
constraints. The supporting team member columns help identify both hard and soft 
interdependencies (Johnson et al., 2011). With respect to trust, the colors can not only help assess 
the type of trust, but also the correspondence between a person’s trust in the automation and the 
automation’s capabilities, sometimes referred to as trust calibration (Lee & Moray, 1994). For 
example, in the scenario in Figure 2, Traffic Collision Avoidance System (TCAS3) is used to sense 
traffic. TCAS can only detect cooperating traffic with special equipment. Aircraft without such 
equipment cannot be sensed and is referred to as uncooperating traffic. Accordingly, in Figure 2 
the machine has the ability to sense cooperating traffic (TA1 column P is green) and the trustor 
trusts the system (TA1 column T is green). This is justified trust. The machine does not have the 
ability to sense uncooperating traffic (TA1 column P is red) and the trustor does not trust the 
system (TA1 column T is red). This is justified mistrust. According to the example, the system is 
less than 100% reliable at deciding on the proper avoidance maneuver (TA1 column P is yellow), 
but the trustor trusts the system (TA1 column T is green). This is unjustified trust. Once the 
decision is made, the system is perfectly capable of executing the avoidance maneuver (TA1 
column P is green) yet the trustor does not trust the system to do so (TA1 column T is red). This 
is unjustified mistrust. These are just a few of the possibilities of how to capture trust in the context 
of a specific trustee and a specific activity. 

6.4! The How 

The third section connects theoretical understanding of work to physical instantiation in a specific 
system. Across the top of the workflow section in Figure 2, there are column headings for each 
algorithm, interface element or human capability used to accomplish the task. Below each heading 
is a black dot to indicate where in the activity that particular component has a role. The dots are 
connected with arrows to indicate potential workflows to accomplish the goal. The resulting graph 
structure is a visual description of all existing and potential workflows, in other words, the 
alternatives. 

The color-coding in the workflow section shown in Figure 2 is a copy of the performer ability 
color-coding. This represents the risk in taking a specific pathway (alternative). For example, the 
risk of a fully automated response to traffic includes the risk of not seeing uncooperating traffic 
(red indicates certain to fail) and the risk of making the wrong avoidance maneuver decision 
(yellow indicates only a possibility of failing). Now consider the fully manual pathway. There is 
risk that the human might not see the traffic due to lack of attention (yellow for sensing). However, 
the human is capable of sensing uncooperating traffic. People, like machines, have the potential to 
make an incorrect decision about how to avoid traffic (yellow). The IA table allows for risk 

                                                
3 You would not normally have TCASI and TCAS II in the same system. This example includes both just to 
demonstrate how you can capture different capabilities. Additionally, TCAS and DAA are often separate systems, but 
they are shown working together for similar explanatory purposes. 



 

 

assessment for specific alternatives and enables the designer to see all of the risks in context, not 
simply a general risk for automating traffic avoidance as a whole. It also allows comparison of risk 
across alternatives. 

So which option is better: fully automated or manual? The answer, as usual, is neither. The best 
answer is a combination of the two (Johnson, Shrewsbury, et al., 2017; Johnson & Vera, 2019). 
The workflows in Figure 2 show some limited support for interdependence as horizontal arrows 
that cross between the human and machine sections. In the interpretation activity, TCAS can alert 
the human about traffic. TCAS-II can provide the pilot with a recommended avoidance maneuver 
(e.g. “pull up”). These interdependence relationships, alerting (observability) and recommending 
(directability) enable additional alternatives. The human pilot can be supplemented by the 
automated solution to potentially outperform either alone. Supplementation means the human can 
partially mitigate the automation’s lack of ability to sense uncooperating traffic. It also means the 
automation can partially mitigate the human’s limited attention. 

Although not shown in Figure 2, the workflow colors could also be based on trust (T column of 
the performer). While using the ability color-coding speaks to potential performance outcomes, 
using the trust color-coding speaks to the potential reliance. It is irrelevant if a system has the 
potential for high performance outcomes if the trustor does not trust the system and never relies 
on it. In the example shown in Figure 2, the trustor (human pilot) does not trust the system to 
command the control inputs. This means that no matter how good the automated solution is, the 
pilot would not rely on it. However, the pilot does trust the system in other ways making both the 
manual and the human-automation teaming options viable. 

The IA table, with small modifications presented here, supports analysis of human-machine trust 
based on the proposed model shown in Figure 1. It provides activity context, directly addresses 
the trustee’s ability, speaks to RTR alternatives, risk, and trust, and allows for distinctions about 
the different types of trust. The IA table provides a detailed level of context necessary for proper 
consideration of trust. Additionally, the IA table can help understand and design support for 
interdependencies (its original purpose) with respect to not only joint activity, but also the process 
of active trust management. In sum, it helps consider all of the major factors influencing 
engagement in risk-taking trust relationships. 

The value of IA is that it provides a detailed contextual lens for interpreting trust. It enables 
designers, developers or analysts to capture the what, who and how contextual aspects of trust is a 
systematic way. The ability to interpret trust at a finer resolution provides the potential for 
improved measurement of trust which in turn has the potential to improve predictions of trust. IA 
also provides a means to compare the risks of different alternatives available which can potentially 
improve predictions about choices to engage in different RTRs. The contextual detail also enables 
engineers to identify weakness in their design and develop engineering advances aimed at 
improving active trust management. 

7! Conclusion 

This work has proposed a new model of risk-taking trust relationships that is an extension and 
refinement of Mayer et al.’s (1995) model of trust. It combines the original trustee factors and 
trustor propensity with considerations for activity context, perceived risk/reward, other RTRs and 



 

 

trustor preference. The role of interdependence relationships is to support active and continuous 
exploration of trust between a trustor and a trustee to ensure trustor assessments are appropriate 
for achieving the best outcomes possible. IA provides a contextual lens for interpreting trust. 
Future sophisticated technology will need to engage in interdependence relationships, like 
observability, predictability and directability to foster appropriate trust calibration. The IA table is 
ideally suited to analysis of human-automation trust and aligns well with the proposed model. It 
can be an effective tool for understanding and designing systems capable of actively managing 
trust through interdependence relationships. 
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